YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Variation in Sagittal Curvature of the Femoral Condyles

    Source: Journal of Biomechanical Engineering:;2024:;volume( 146 ):;issue: 011::page 111004-1
    Author:
    Winslow, Eden
    ,
    Pan, Xuanbei
    ,
    Hull, Maury L.
    DOI: 10.1115/1.4065813
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In designing femoral components, which restore native (i.e., healthy) knee kinematics, the flexion–extension (F-E) axis of the tibiofemoral joint should match that of the native knee. Because the F–E axis is governed by the curvature of the femoral condyles in the sagittal plane, the primary objective was to determine the variation in radii of curvature. Eleven high accuracy three-dimensional (3D) femur models were generated from ultrahigh resolution CT scans. The sagittal profile of each condyle was created. The radii of curvature at 15 deg increments of arc length were determined based on segment circles best-fit to ±15 deg of arc at each increment. Results were standardized to the radius of the best-fit overall circle to 15 deg–105 deg for the femoral condyle having a radius closest to the mean radius. Medial and lateral femoral condyles exhibited multiradius of curvature sagittal profiles where the radius decreased at 30 deg flexion by 10 mm and at 15 deg flexion by 8 mm, respectively. On either side of the decrease, radii of segment circles were relatively constant. Beyond the transition angles where the radii decreased, the anterior-posterior (A-P) positions of the centers of curvature varied 4.8 mm and 2.3 mm for the medial and lateral condyles, respectively. A two-radius of curvature profile approximates the radii of curvature of both native femoral condyles, but the transition angles differ with the transition angle of the medial femoral condyle occurring about 15 deg later in flexion. Owing to variation in A-P positions of centers of curvature, the F-E axis is not strictly fixed in the femur.
    • Download: (906.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Variation in Sagittal Curvature of the Femoral Condyles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302471
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorWinslow, Eden
    contributor authorPan, Xuanbei
    contributor authorHull, Maury L.
    date accessioned2024-12-24T18:38:03Z
    date available2024-12-24T18:38:03Z
    date copyright7/16/2024 12:00:00 AM
    date issued2024
    identifier issn0148-0731
    identifier otherbio_146_11_111004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302471
    description abstractIn designing femoral components, which restore native (i.e., healthy) knee kinematics, the flexion–extension (F-E) axis of the tibiofemoral joint should match that of the native knee. Because the F–E axis is governed by the curvature of the femoral condyles in the sagittal plane, the primary objective was to determine the variation in radii of curvature. Eleven high accuracy three-dimensional (3D) femur models were generated from ultrahigh resolution CT scans. The sagittal profile of each condyle was created. The radii of curvature at 15 deg increments of arc length were determined based on segment circles best-fit to ±15 deg of arc at each increment. Results were standardized to the radius of the best-fit overall circle to 15 deg–105 deg for the femoral condyle having a radius closest to the mean radius. Medial and lateral femoral condyles exhibited multiradius of curvature sagittal profiles where the radius decreased at 30 deg flexion by 10 mm and at 15 deg flexion by 8 mm, respectively. On either side of the decrease, radii of segment circles were relatively constant. Beyond the transition angles where the radii decreased, the anterior-posterior (A-P) positions of the centers of curvature varied 4.8 mm and 2.3 mm for the medial and lateral condyles, respectively. A two-radius of curvature profile approximates the radii of curvature of both native femoral condyles, but the transition angles differ with the transition angle of the medial femoral condyle occurring about 15 deg later in flexion. Owing to variation in A-P positions of centers of curvature, the F-E axis is not strictly fixed in the femur.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalysis of Variation in Sagittal Curvature of the Femoral Condyles
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4065813
    journal fristpage111004-1
    journal lastpage111004-6
    page6
    treeJournal of Biomechanical Engineering:;2024:;volume( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian