YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improving Output Power of a Torsional-Flutter Harvester in Stochastic Thunderstorms by Duffing—Van Der Pol Restoring Torque1

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 010 ):;issue: 004::page 41204-1
    Author:
    Caracoglia, Luca
    DOI: 10.1115/1.4065532
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Wind energy harvesters are usually designed to operate in the low wind speed range. They rely on smaller swept areas, as a complement to larger horizontal-axis wind turbines. A torsional-flutter-based apparatus is investigated herein to extract wind energy. A nonlinear hybrid restoring toque mechanism, installed at equally spaced supports, is used to produce energy through limit-cycle vibration. Energy conversion and storage from the wind flow are enabled by eddy currents. The apparatus is used during thunderstorm outflows to explore its efficiency in nonideal wind conditions. The thunderstorm flow model accounts for both nonstationary turbulence and slowly varying mean wind speed, replicating thunderstorm's intensification and decay stages. This paper evolves from a recent study to examine stochastic stability. More specifically, the output power is derived as a random process that is found numerically. Various thunderstorm features and variable apparatus configurations are evaluated. Numerical investigations confirm the detrimental effect of nonideal, thunderstorms on harvester performance with, on average, an adverse increment of operational speed (about +30%). Besides nonlinear damping, the “benign” flutter-prone effect is controlled by the square value of the flapping angle. Since flapping amplitudes are moderate at sustained flutter, activation of the apparatus is delayed and exacerbated by the nonstationary outflow and aeroelastic load features. Finally, efficiency is carefully investigated by quantification of output power and “quality factor.”
    • Download: (2.254Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improving Output Power of a Torsional-Flutter Harvester in Stochastic Thunderstorms by Duffing—Van Der Pol Restoring Torque1

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302429
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorCaracoglia, Luca
    date accessioned2024-12-24T18:36:24Z
    date available2024-12-24T18:36:24Z
    date copyright7/26/2024 12:00:00 AM
    date issued2024
    identifier issn2332-9017
    identifier otherrisk_010_04_041204.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302429
    description abstractWind energy harvesters are usually designed to operate in the low wind speed range. They rely on smaller swept areas, as a complement to larger horizontal-axis wind turbines. A torsional-flutter-based apparatus is investigated herein to extract wind energy. A nonlinear hybrid restoring toque mechanism, installed at equally spaced supports, is used to produce energy through limit-cycle vibration. Energy conversion and storage from the wind flow are enabled by eddy currents. The apparatus is used during thunderstorm outflows to explore its efficiency in nonideal wind conditions. The thunderstorm flow model accounts for both nonstationary turbulence and slowly varying mean wind speed, replicating thunderstorm's intensification and decay stages. This paper evolves from a recent study to examine stochastic stability. More specifically, the output power is derived as a random process that is found numerically. Various thunderstorm features and variable apparatus configurations are evaluated. Numerical investigations confirm the detrimental effect of nonideal, thunderstorms on harvester performance with, on average, an adverse increment of operational speed (about +30%). Besides nonlinear damping, the “benign” flutter-prone effect is controlled by the square value of the flapping angle. Since flapping amplitudes are moderate at sustained flutter, activation of the apparatus is delayed and exacerbated by the nonstationary outflow and aeroelastic load features. Finally, efficiency is carefully investigated by quantification of output power and “quality factor.”
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImproving Output Power of a Torsional-Flutter Harvester in Stochastic Thunderstorms by Duffing—Van Der Pol Restoring Torque1
    typeJournal Paper
    journal volume10
    journal issue4
    journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
    identifier doi10.1115/1.4065532
    journal fristpage41204-1
    journal lastpage41204-13
    page13
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 010 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian