YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A New Approach to Predict Tributary Phosphorus Loads Using Machine Learning– and Physics-Based Modeling Systems

    Source: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 003
    Author:
    Feng Chang, Christina
    ,
    Astitha, Marina
    ,
    Yuan, Yongping
    ,
    Tang, Chunling
    ,
    Vlahos, Penny
    ,
    Garcia, Valerie
    ,
    Khaira, Ummul
    DOI: 10.1175/AIES-D-22-0049.1
    Publisher: American Meteorological Society
    • Download: (2.374Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A New Approach to Predict Tributary Phosphorus Loads Using Machine Learning– and Physics-Based Modeling Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4300333
    Collections
    • Artificial Intelligence for the Earth Systems

    Show full item record

    contributor authorFeng Chang, Christina
    contributor authorAstitha, Marina
    contributor authorYuan, Yongping
    contributor authorTang, Chunling
    contributor authorVlahos, Penny
    contributor authorGarcia, Valerie
    contributor authorKhaira, Ummul
    date accessioned2024-12-24T14:12:09Z
    date available2024-12-24T14:12:09Z
    date copyright01 Jul. 2023
    date issued2023
    identifier otheraies-AIES-D-22-0049.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4300333
    languageEnglish
    publisherAmerican Meteorological Society
    titleA New Approach to Predict Tributary Phosphorus Loads Using Machine Learning– and Physics-Based Modeling Systems
    typeJournal Paper
    journal volume2
    journal issue3
    journal titleArtificial Intelligence for the Earth Systems
    identifier doi10.1175/AIES-D-22-0049.1
    journal lastpagee220049
    treeArtificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian