A New Approach to Predict Tributary Phosphorus Loads Using Machine Learning– and Physics-Based Modeling SystemsSource: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 003Author:Feng Chang, Christina
,
Astitha, Marina
,
Yuan, Yongping
,
Tang, Chunling
,
Vlahos, Penny
,
Garcia, Valerie
,
Khaira, Ummul
DOI: 10.1175/AIES-D-22-0049.1Publisher: American Meteorological Society
|
Collections
Show full item record
contributor author | Feng Chang, Christina | |
contributor author | Astitha, Marina | |
contributor author | Yuan, Yongping | |
contributor author | Tang, Chunling | |
contributor author | Vlahos, Penny | |
contributor author | Garcia, Valerie | |
contributor author | Khaira, Ummul | |
date accessioned | 2024-12-24T14:12:09Z | |
date available | 2024-12-24T14:12:09Z | |
date copyright | 01 Jul. 2023 | |
date issued | 2023 | |
identifier other | aies-AIES-D-22-0049.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4300333 | |
language | English | |
publisher | American Meteorological Society | |
title | A New Approach to Predict Tributary Phosphorus Loads Using Machine Learning– and Physics-Based Modeling Systems | |
type | Journal Paper | |
journal volume | 2 | |
journal issue | 3 | |
journal title | Artificial Intelligence for the Earth Systems | |
identifier doi | 10.1175/AIES-D-22-0049.1 | |
journal lastpage | e220049 | |
tree | Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 003 | |
contenttype | Fulltext |