Show simple item record

contributor authorFeng Chang, Christina
contributor authorAstitha, Marina
contributor authorYuan, Yongping
contributor authorTang, Chunling
contributor authorVlahos, Penny
contributor authorGarcia, Valerie
contributor authorKhaira, Ummul
date accessioned2024-12-24T14:12:09Z
date available2024-12-24T14:12:09Z
date copyright01 Jul. 2023
date issued2023
identifier otheraies-AIES-D-22-0049.1.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4300333
languageEnglish
publisherAmerican Meteorological Society
titleA New Approach to Predict Tributary Phosphorus Loads Using Machine Learning– and Physics-Based Modeling Systems
typeJournal Paper
journal volume2
journal issue3
journal titleArtificial Intelligence for the Earth Systems
identifier doi10.1175/AIES-D-22-0049.1
journal lastpagee220049
treeArtificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record