YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interval Predictor Model for the Survival Signature Using Monotone Radial Basis Functions

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 003::page 04024034-1
    Author:
    Jasper Behrensdorf
    ,
    Matteo Broggi
    ,
    Michael Beer
    DOI: 10.1061/AJRUA6.RUENG-1219
    Publisher: American Society of Civil Engineers
    Abstract: This research describes a novel method for approximating the survival signature for very large systems. In recent years, the survival signature has emerged as a capable tool for the reliability analysis of critical infrastructure systems. In comparison with traditional approaches, it allows for complex modeling of dependencies, common causes of failures, as well as imprecision. However, while it enables the consideration of these effects, as an inherently combinatorial method, the survival signature suffers greatly from the curse of dimensionality. Critical infrastructures typically involve upward of hundreds of nodes. At this scale analytical computation of the survival signature is impossible using current computing capabilities. Instead of performing the full analytical computation of the survival signature, some studies have focused on approximating it using Monte Carlo simulation. While this reduces the numerical demand and allows for larger systems to be analyzed, these approaches will also quickly reach their limits with growing network size and complexity. Here, instead of approximating the full survival signature, we build a surrogate model based on normalized radial basis functions where the data points required to fit the model are approximated by Monte Carlo simulation. The resulting uncertainty from the simulation is then used to build an interval predictor model (IPM) that estimates intervals where the remaining survival signature values are expected to fall. By applying this imprecise survival signature, we can obtain bounds on the reliability. Because a low number of data points is sufficient to build the IPM, this presents a significant reduction in numerical demand and allows for very large systems to be considered.
    • Download: (933.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interval Predictor Model for the Survival Signature Using Monotone Radial Basis Functions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4299222
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorJasper Behrensdorf
    contributor authorMatteo Broggi
    contributor authorMichael Beer
    date accessioned2024-12-24T10:36:06Z
    date available2024-12-24T10:36:06Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherAJRUA6.RUENG-1219.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4299222
    description abstractThis research describes a novel method for approximating the survival signature for very large systems. In recent years, the survival signature has emerged as a capable tool for the reliability analysis of critical infrastructure systems. In comparison with traditional approaches, it allows for complex modeling of dependencies, common causes of failures, as well as imprecision. However, while it enables the consideration of these effects, as an inherently combinatorial method, the survival signature suffers greatly from the curse of dimensionality. Critical infrastructures typically involve upward of hundreds of nodes. At this scale analytical computation of the survival signature is impossible using current computing capabilities. Instead of performing the full analytical computation of the survival signature, some studies have focused on approximating it using Monte Carlo simulation. While this reduces the numerical demand and allows for larger systems to be analyzed, these approaches will also quickly reach their limits with growing network size and complexity. Here, instead of approximating the full survival signature, we build a surrogate model based on normalized radial basis functions where the data points required to fit the model are approximated by Monte Carlo simulation. The resulting uncertainty from the simulation is then used to build an interval predictor model (IPM) that estimates intervals where the remaining survival signature values are expected to fall. By applying this imprecise survival signature, we can obtain bounds on the reliability. Because a low number of data points is sufficient to build the IPM, this presents a significant reduction in numerical demand and allows for very large systems to be considered.
    publisherAmerican Society of Civil Engineers
    titleInterval Predictor Model for the Survival Signature Using Monotone Radial Basis Functions
    typeJournal Article
    journal volume10
    journal issue3
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.RUENG-1219
    journal fristpage04024034-1
    journal lastpage04024034-8
    page8
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian