YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Indefinability of Effective Stress for Unsaturated Soils

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 008::page 04024064-1
    Author:
    Xiong Zhang
    ,
    Sandra Houston
    DOI: 10.1061/JGGEFK.GTENG-12435
    Publisher: American Society of Civil Engineers
    Abstract: For decades, researchers have searched for an unsaturated soil effective stress that performs analogously to effective stress for saturated soils and provides some simplifications over net stress and suction approaches. A recent debate is whether problems identified with unsaturated soil effective stress can be resolved via elastoplastic analyses. Effective stress equations are reviewed and categorized as being based on volume change, shear strength, yield, or degree of saturation. These equations are evaluated for consistency with saturated soil effective stress expectations using the Barcelona basic model (BBM), simplified into an integrated elastoplastic framework using the modified state surface approach (MSSA). Under isotropic conditions, saturated soil constant volume and yield curves are coincident, and the effective stress principle applies. In contrast, unsaturated soil constant volume and yield curves diverge, which is at root to the indefinability of an effective stress for unsaturated soils. Although effective stress for saturated soils has been defined on the basis of volume change, unsaturated soil effective stress is often defined on shear strength or degree of saturation, with attempted extrapolation to more general volume change and yield responses. Effective stress equations, when used for constitutive modeling of unsaturated soils, cannot recover the form of saturated soil effective stress models, nor provide the often-asserted simplifications or analytical economies. It is demonstrated that volume change and/or yield can occur under any constant unsaturated soil effective stress. It is shown that it is impossible to define an effective stress for unsaturated soils that functions analogously to that of saturated soils. An effective stress approach for unsaturated soils is demonstrated to be, at most, a mathematical transformation, which may provide simplifications for some limited usages.
    • Download: (1.889Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Indefinability of Effective Stress for Unsaturated Soils

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298979
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorXiong Zhang
    contributor authorSandra Houston
    date accessioned2024-12-24T10:28:13Z
    date available2024-12-24T10:28:13Z
    date copyright8/1/2024 12:00:00 AM
    date issued2024
    identifier otherJGGEFK.GTENG-12435.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298979
    description abstractFor decades, researchers have searched for an unsaturated soil effective stress that performs analogously to effective stress for saturated soils and provides some simplifications over net stress and suction approaches. A recent debate is whether problems identified with unsaturated soil effective stress can be resolved via elastoplastic analyses. Effective stress equations are reviewed and categorized as being based on volume change, shear strength, yield, or degree of saturation. These equations are evaluated for consistency with saturated soil effective stress expectations using the Barcelona basic model (BBM), simplified into an integrated elastoplastic framework using the modified state surface approach (MSSA). Under isotropic conditions, saturated soil constant volume and yield curves are coincident, and the effective stress principle applies. In contrast, unsaturated soil constant volume and yield curves diverge, which is at root to the indefinability of an effective stress for unsaturated soils. Although effective stress for saturated soils has been defined on the basis of volume change, unsaturated soil effective stress is often defined on shear strength or degree of saturation, with attempted extrapolation to more general volume change and yield responses. Effective stress equations, when used for constitutive modeling of unsaturated soils, cannot recover the form of saturated soil effective stress models, nor provide the often-asserted simplifications or analytical economies. It is demonstrated that volume change and/or yield can occur under any constant unsaturated soil effective stress. It is shown that it is impossible to define an effective stress for unsaturated soils that functions analogously to that of saturated soils. An effective stress approach for unsaturated soils is demonstrated to be, at most, a mathematical transformation, which may provide simplifications for some limited usages.
    publisherAmerican Society of Civil Engineers
    titleIndefinability of Effective Stress for Unsaturated Soils
    typeJournal Article
    journal volume150
    journal issue8
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-12435
    journal fristpage04024064-1
    journal lastpage04024064-14
    page14
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian