YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comprehensive Optimization Study of Microbially Induced Carbonate Precipitation for Soil Strength Enhancement: Impact of Biochemical and Environmental Factors

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 010::page 04024101-1
    Author:
    Yuze Wang
    ,
    Charalampos Konstantinou
    DOI: 10.1061/JGGEFK.GTENG-12230
    Publisher: American Society of Civil Engineers
    Abstract: Microbially induced carbonate precipitation (MICP) represents a technique for biocementation, altering the hydraulic and mechanical properties of porous materials using bacterial and cementation solutions. The efficacy of MICP depends on various biochemical and environmental elements, requiring careful consideration to achieve optimal designs for specific purposes. This study evaluates the efficiency of different MICP protocols under varying environmental conditions, employing two bacterial strains: S. pasteurii and S. aquimarina, to optimize soil strength enhancement. In addition, microscale properties of carbonate crystals were investigated and their effects on soil strength enhancement were analyzed. Results demonstrate that among the factors investigated, bacterial strain and concentration of cementation solution significantly influence the biochemical aspect, while temperature predominantly affects the environmental aspect. During the MICP treatment process, the efficiency of chemical conversion through S. pasteurii varied between approximately 80% and 40%, while for S. aquimarina, it was only around 20%. Consequently, the CaCO3 content resulting from MICP treatment using S. pasteurii was significantly higher, ranging between 5% and 7%, compared to that achieved with S. aquimarina, which was about 0.5% to 1.5%. The concentration of the cementation solution also plays a pivotal role, with an optimized value of 0.5 M being critical for achieving maximum efficiency and CaCO3 content. The ideal temperature span for MICP operation falls between 20°C and 35°C, with salinity and oxygen levels exerting minor impact. Furthermore, although salinity influences the characteristics of formed carbonate crystals, its effect on unconfined compressive strength (UCS) values of MICP-treated soil remains marginal. Samples subjected to a one-phase treatment, adjusted to pH values between 6.0 and 7.5, exhibit roughly half the UCS strength compared to the two-phase treatment. These findings hold promising potential for MICP applications in both terrestrial and marine environments for strength enhancement.
    • Download: (28.63Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comprehensive Optimization Study of Microbially Induced Carbonate Precipitation for Soil Strength Enhancement: Impact of Biochemical and Environmental Factors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298961
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorYuze Wang
    contributor authorCharalampos Konstantinou
    date accessioned2024-12-24T10:27:41Z
    date available2024-12-24T10:27:41Z
    date copyright10/1/2024 12:00:00 AM
    date issued2024
    identifier otherJGGEFK.GTENG-12230.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298961
    description abstractMicrobially induced carbonate precipitation (MICP) represents a technique for biocementation, altering the hydraulic and mechanical properties of porous materials using bacterial and cementation solutions. The efficacy of MICP depends on various biochemical and environmental elements, requiring careful consideration to achieve optimal designs for specific purposes. This study evaluates the efficiency of different MICP protocols under varying environmental conditions, employing two bacterial strains: S. pasteurii and S. aquimarina, to optimize soil strength enhancement. In addition, microscale properties of carbonate crystals were investigated and their effects on soil strength enhancement were analyzed. Results demonstrate that among the factors investigated, bacterial strain and concentration of cementation solution significantly influence the biochemical aspect, while temperature predominantly affects the environmental aspect. During the MICP treatment process, the efficiency of chemical conversion through S. pasteurii varied between approximately 80% and 40%, while for S. aquimarina, it was only around 20%. Consequently, the CaCO3 content resulting from MICP treatment using S. pasteurii was significantly higher, ranging between 5% and 7%, compared to that achieved with S. aquimarina, which was about 0.5% to 1.5%. The concentration of the cementation solution also plays a pivotal role, with an optimized value of 0.5 M being critical for achieving maximum efficiency and CaCO3 content. The ideal temperature span for MICP operation falls between 20°C and 35°C, with salinity and oxygen levels exerting minor impact. Furthermore, although salinity influences the characteristics of formed carbonate crystals, its effect on unconfined compressive strength (UCS) values of MICP-treated soil remains marginal. Samples subjected to a one-phase treatment, adjusted to pH values between 6.0 and 7.5, exhibit roughly half the UCS strength compared to the two-phase treatment. These findings hold promising potential for MICP applications in both terrestrial and marine environments for strength enhancement.
    publisherAmerican Society of Civil Engineers
    titleA Comprehensive Optimization Study of Microbially Induced Carbonate Precipitation for Soil Strength Enhancement: Impact of Biochemical and Environmental Factors
    typeJournal Article
    journal volume150
    journal issue10
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-12230
    journal fristpage04024101-1
    journal lastpage04024101-19
    page19
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian