YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Elastoplastic Model for Predicting Kinematics and Trajectories of Suction-Embedded Plate Anchors under Eccentric Loading in Clay

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 006::page 04024044-1
    Author:
    Maozhu Peng
    ,
    Zhen-Yu Yin
    DOI: 10.1061/JGGEFK.GTENG-12177
    Publisher: American Society of Civil Engineers
    Abstract: Previous plasticity models for predicting anchor kinematics under eccentric loading in clay are mostly rigid plastic. They may produce inaccurate outcomes in some conditions. This paper presents an elastoplastic model to address this issue. Closed-form solutions for anchor velocities are derived considering two types of boundary conditions: the padeye (1) fastened to a mooring chain, with the chain behavior modeled; or (2) hinged to a rigid rod. Compared with previous methods, the proposed method more realistically captures the soil behavior while avoiding complicated iterative procedures for solving anchor velocities, thus enabling anchor trajectories to be accurately and efficiently obtained by simple time integration. A series of 3D large deformation finite element analyses are conducted to study the anchor behaviors under different eccentric loading, and the proposed model is used to reproduce these simulations. Their results are compared for validation, with good agreements achieved. These results indicate that anchors under eccentric loading will ultimately translate along a fixed direction with constant soil reaction forces. Analytical solutions for this ultimate state are given based on the proposed method. Particularly, the ultimate resultant soil reaction force is demonstrated always passing through the anchor center. This is an assumption in a previous literature but is found to be a consequence of the proposed anchor constitutive relations.
    • Download: (1.344Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Elastoplastic Model for Predicting Kinematics and Trajectories of Suction-Embedded Plate Anchors under Eccentric Loading in Clay

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298957
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorMaozhu Peng
    contributor authorZhen-Yu Yin
    date accessioned2024-12-24T10:27:34Z
    date available2024-12-24T10:27:34Z
    date copyright6/1/2024 12:00:00 AM
    date issued2024
    identifier otherJGGEFK.GTENG-12177.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298957
    description abstractPrevious plasticity models for predicting anchor kinematics under eccentric loading in clay are mostly rigid plastic. They may produce inaccurate outcomes in some conditions. This paper presents an elastoplastic model to address this issue. Closed-form solutions for anchor velocities are derived considering two types of boundary conditions: the padeye (1) fastened to a mooring chain, with the chain behavior modeled; or (2) hinged to a rigid rod. Compared with previous methods, the proposed method more realistically captures the soil behavior while avoiding complicated iterative procedures for solving anchor velocities, thus enabling anchor trajectories to be accurately and efficiently obtained by simple time integration. A series of 3D large deformation finite element analyses are conducted to study the anchor behaviors under different eccentric loading, and the proposed model is used to reproduce these simulations. Their results are compared for validation, with good agreements achieved. These results indicate that anchors under eccentric loading will ultimately translate along a fixed direction with constant soil reaction forces. Analytical solutions for this ultimate state are given based on the proposed method. Particularly, the ultimate resultant soil reaction force is demonstrated always passing through the anchor center. This is an assumption in a previous literature but is found to be a consequence of the proposed anchor constitutive relations.
    publisherAmerican Society of Civil Engineers
    titleAn Elastoplastic Model for Predicting Kinematics and Trajectories of Suction-Embedded Plate Anchors under Eccentric Loading in Clay
    typeJournal Article
    journal volume150
    journal issue6
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-12177
    journal fristpage04024044-1
    journal lastpage04024044-11
    page11
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian