YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Risk Comparison of Hurricane Scenarios as Disruptions of Hydrologic Basin Order with Social Vulnerability Criteria

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 003::page 04024051-1
    Author:
    Gigi Pavur
    ,
    James H. Lambert
    ,
    Venkataraman Lakshmi
    DOI: 10.1061/AJRUA6.RUENG-1228
    Publisher: American Society of Civil Engineers
    Abstract: Economic damages of hurricanes and tropical cyclones are increasing faster than the populations and wealth of many coastal areas. There is urgency to update priorities of agencies engaged with risk assessment, risk mitigation, and risk communication across hundreds or thousands of water basins. This paper evaluates hydrology and social vulnerability factors to develop a risk register at a subbasin scale for which the priorities of agencies vary by storm scenario using publicly available satellite-based Earth observations. The novelty and innovation of this approach is the quantification and mapping of risk as a disruption of system order, while using social vulnerability indices and sensor data from disparate sources. The results assist with allocating resources across basins under several scenarios of hydrology and social vulnerability. The approach is in several parts as follows: first, a baseline order of basins is defined using the CDC/ATSDR social vulnerability index (SVI). Next, a set of storm scenarios is defined using Earth Observations and modeled data. Next, a swing-weight technique is used to update factor weights under each scenario. Lastly, the importance order of basins relative to the baseline order is used to compare the risk of scenarios across the study area. The risk is thus quantified (by least squares difference of order) as a disruption to the ordering of basins by social and hydrologic factors (i.e., SVI, precipitation, wind speed, and soil moisture), with attention to the most disruptive scenarios. An application is described with extensive mapping of hydrologic basins for Hurricane Ian to demonstrate a versatile method to address uncertainty of scenarios of storm nature and extent across coastal mega-regions.
    • Download: (4.013Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Risk Comparison of Hurricane Scenarios as Disruptions of Hydrologic Basin Order with Social Vulnerability Criteria

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298017
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorGigi Pavur
    contributor authorJames H. Lambert
    contributor authorVenkataraman Lakshmi
    date accessioned2024-12-24T09:57:10Z
    date available2024-12-24T09:57:10Z
    date copyright9/1/2024 12:00:00 AM
    date issued2024
    identifier otherAJRUA6.RUENG-1228.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298017
    description abstractEconomic damages of hurricanes and tropical cyclones are increasing faster than the populations and wealth of many coastal areas. There is urgency to update priorities of agencies engaged with risk assessment, risk mitigation, and risk communication across hundreds or thousands of water basins. This paper evaluates hydrology and social vulnerability factors to develop a risk register at a subbasin scale for which the priorities of agencies vary by storm scenario using publicly available satellite-based Earth observations. The novelty and innovation of this approach is the quantification and mapping of risk as a disruption of system order, while using social vulnerability indices and sensor data from disparate sources. The results assist with allocating resources across basins under several scenarios of hydrology and social vulnerability. The approach is in several parts as follows: first, a baseline order of basins is defined using the CDC/ATSDR social vulnerability index (SVI). Next, a set of storm scenarios is defined using Earth Observations and modeled data. Next, a swing-weight technique is used to update factor weights under each scenario. Lastly, the importance order of basins relative to the baseline order is used to compare the risk of scenarios across the study area. The risk is thus quantified (by least squares difference of order) as a disruption to the ordering of basins by social and hydrologic factors (i.e., SVI, precipitation, wind speed, and soil moisture), with attention to the most disruptive scenarios. An application is described with extensive mapping of hydrologic basins for Hurricane Ian to demonstrate a versatile method to address uncertainty of scenarios of storm nature and extent across coastal mega-regions.
    publisherAmerican Society of Civil Engineers
    titleRisk Comparison of Hurricane Scenarios as Disruptions of Hydrologic Basin Order with Social Vulnerability Criteria
    typeJournal Article
    journal volume10
    journal issue3
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.RUENG-1228
    journal fristpage04024051-1
    journal lastpage04024051-16
    page16
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian