YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Postliquefaction Reconsolidation Settlement of a Soil Deposit Considering Spatially Variable Properties and Ground Motion Variability

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 003::page 04024001-1
    Author:
    Devdeep Basu
    ,
    Jack Montgomery
    ,
    Armin W. Stuedlein
    DOI: 10.1061/JGGEFK.GTENG-11768
    Publisher: ASCE
    Abstract: Assessment of earthquake-induced liquefaction is an important topic in geotechnical engineering due to the significant potential for damage to infrastructure. Some of the most significant infrastructure damage occurs due to differential settlement of the ground, including due to liquefaction. Postliquefaction deformations commonly are assessed using one-dimensional empirical models, which inherently assume laterally homogeneous soil layers. Numerical models offer the potential to examine the effects of ground motion variability and spatially variable soil properties on liquefaction-induced deformations. This study explored the postliquefaction reconsolidation settlement for a site in Hollywood, South Carolina, which was characterized using a three-dimensional (3D) geostatistical model and simulated using the numerical platform FLAC and constitutive model PM4Sand. The effects of ground motion characteristics on mean and maximum differential settlements were investigated. The physical mechanisms associated with postliquefaction responses such as excess pore pressures, shear strains, and volumetric strains also were examined. The efficacy of uniform models assuming representative percentile soil properties to represent the stochastic mean settlement was investigated. The inherent inability of uniform models to capture differential settlements and therefore the need for using stochastic models is discussed.
    • Download: (5.649Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Postliquefaction Reconsolidation Settlement of a Soil Deposit Considering Spatially Variable Properties and Ground Motion Variability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297588
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorDevdeep Basu
    contributor authorJack Montgomery
    contributor authorArmin W. Stuedlein
    date accessioned2024-04-27T22:49:25Z
    date available2024-04-27T22:49:25Z
    date issued2024/03/01
    identifier other10.1061-JGGEFK.GTENG-11768.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297588
    description abstractAssessment of earthquake-induced liquefaction is an important topic in geotechnical engineering due to the significant potential for damage to infrastructure. Some of the most significant infrastructure damage occurs due to differential settlement of the ground, including due to liquefaction. Postliquefaction deformations commonly are assessed using one-dimensional empirical models, which inherently assume laterally homogeneous soil layers. Numerical models offer the potential to examine the effects of ground motion variability and spatially variable soil properties on liquefaction-induced deformations. This study explored the postliquefaction reconsolidation settlement for a site in Hollywood, South Carolina, which was characterized using a three-dimensional (3D) geostatistical model and simulated using the numerical platform FLAC and constitutive model PM4Sand. The effects of ground motion characteristics on mean and maximum differential settlements were investigated. The physical mechanisms associated with postliquefaction responses such as excess pore pressures, shear strains, and volumetric strains also were examined. The efficacy of uniform models assuming representative percentile soil properties to represent the stochastic mean settlement was investigated. The inherent inability of uniform models to capture differential settlements and therefore the need for using stochastic models is discussed.
    publisherASCE
    titlePostliquefaction Reconsolidation Settlement of a Soil Deposit Considering Spatially Variable Properties and Ground Motion Variability
    typeJournal Article
    journal volume150
    journal issue3
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-11768
    journal fristpage04024001-1
    journal lastpage04024001-20
    page20
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian