YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Centrifuge and Numerical Modeling of the Seismic Response of Buried Water Supply Reservoirs

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 003::page 04023141-1
    Author:
    Karim AlKhatib
    ,
    Youssef M. A. Hashash
    ,
    Katerina Ziotopoulou
    ,
    James Heins
    DOI: 10.1061/JGGEFK.GTENG-11758
    Publisher: ASCE
    Abstract: Buried water reservoirs are increasingly being built to replace open aboveground municipal water supply reservoirs in urban areas to enhance water quality and utilize their surface footprint for other purposes such as public parks or placement of solar arrays. Many of these lifeline structures are in seismically active regions and, as such, need to be designed to remain operational after severe earthquake shaking. However, evaluating their seismic response is challenging and involves accounting for the interaction of the structure with the stored fluid and the retained soil; in other words, accounting for fluid–structure–soil interaction (FSSI). This paper presents a combined experimental–numerical study on the seismic behavior of buried water reservoirs while considering FSSI. Two series of centrifuge model tests were performed at different reservoir orientations to investigate one-dimensional (1D) and two-dimensional (2D) motion effects under full, half-full, and empty reservoir conditions. Corresponding numerical models were developed whereby the structure and the soil were represented by continuum Lagrangian finite elements, while the fluid was modeled via Arbitrary Lagrangian Eulerian formulation. Soil–structure and fluid–structure interface parameters were calibrated using the experimental measurements. The simulations successfully captured the measured reservoir responses in terms of accelerations, bending moment increments, and water pressures. The study found that the common assumption of plane strain is not applicable for reservoirs because their behavior was found to be truly three-dimensional (3D) whereby stresses accumulated at the corners. Furthermore, the full reservoir resulted in the highest seismic demands in the reservoir walls and roof while the empty reservoir yielded the highest base slippage. The study demonstrates that the complex reservoir seismic response is best captured by carrying out a 3D FSSI numerical simulation.
    • Download: (5.393Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Centrifuge and Numerical Modeling of the Seismic Response of Buried Water Supply Reservoirs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297586
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorKarim AlKhatib
    contributor authorYoussef M. A. Hashash
    contributor authorKaterina Ziotopoulou
    contributor authorJames Heins
    date accessioned2024-04-27T22:49:22Z
    date available2024-04-27T22:49:22Z
    date issued2024/03/01
    identifier other10.1061-JGGEFK.GTENG-11758.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297586
    description abstractBuried water reservoirs are increasingly being built to replace open aboveground municipal water supply reservoirs in urban areas to enhance water quality and utilize their surface footprint for other purposes such as public parks or placement of solar arrays. Many of these lifeline structures are in seismically active regions and, as such, need to be designed to remain operational after severe earthquake shaking. However, evaluating their seismic response is challenging and involves accounting for the interaction of the structure with the stored fluid and the retained soil; in other words, accounting for fluid–structure–soil interaction (FSSI). This paper presents a combined experimental–numerical study on the seismic behavior of buried water reservoirs while considering FSSI. Two series of centrifuge model tests were performed at different reservoir orientations to investigate one-dimensional (1D) and two-dimensional (2D) motion effects under full, half-full, and empty reservoir conditions. Corresponding numerical models were developed whereby the structure and the soil were represented by continuum Lagrangian finite elements, while the fluid was modeled via Arbitrary Lagrangian Eulerian formulation. Soil–structure and fluid–structure interface parameters were calibrated using the experimental measurements. The simulations successfully captured the measured reservoir responses in terms of accelerations, bending moment increments, and water pressures. The study found that the common assumption of plane strain is not applicable for reservoirs because their behavior was found to be truly three-dimensional (3D) whereby stresses accumulated at the corners. Furthermore, the full reservoir resulted in the highest seismic demands in the reservoir walls and roof while the empty reservoir yielded the highest base slippage. The study demonstrates that the complex reservoir seismic response is best captured by carrying out a 3D FSSI numerical simulation.
    publisherASCE
    titleCentrifuge and Numerical Modeling of the Seismic Response of Buried Water Supply Reservoirs
    typeJournal Article
    journal volume150
    journal issue3
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-11758
    journal fristpage04023141-1
    journal lastpage04023141-16
    page16
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian