YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Resilience Assessment under Imprecise Probability

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 002::page 04024025-1
    Author:
    Cao Wang
    ,
    Michael Beer
    ,
    Matthias G. R. Faes
    ,
    De-Cheng Feng
    DOI: 10.1061/AJRUA6.RUENG-1244
    Publisher: ASCE
    Abstract: Resilience analysis of civil structures and infrastructure systems is a powerful approach to quantifying an object’s ability to prepare for, recover from, and adapt to disruptive events. The resilience is typically measured probabilistically by the integration of the time-variant performance function, which is by nature a stochastic process as it is affected by many uncertain factors such as hazard occurrences and posthazard recoveries. Resilience evaluation could be challenging in many cases with imprecise probability information on the time-variant performance function. In this paper, a novel method for the assessment of imprecise resilience is presented, which deals with resilience problems with nonprobabilistic performance function. The proposed method, producing lower and upper bounds for imprecise resilience, has benefited from that for imprecise reliability as documented in the literature, motivated by the similarity between reliability and resilience. Two types of stochastic processes, namely log-Gamma and lognormal processes, are employed to model the performance function, with which the explicit form of resilience is derived. Moreover, for a planning horizon within which the hazards may occur for multiple times, the incompletely informed performance function results in “time-dependent imprecise resilience,” which is dependent on the duration of the service period (e.g., life cycle) and can also be handled by applying the proposed method. Through examining the time-dependent resilience of a strip foundation in a coastal area subjected to groundwater intrusion in a changing climate, the applicability of the proposed resilience bounding method is demonstrated. The impact of imprecise probability information on resilience is quantified through sensitivity analysis.
    • Download: (763.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Resilience Assessment under Imprecise Probability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297444
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorCao Wang
    contributor authorMichael Beer
    contributor authorMatthias G. R. Faes
    contributor authorDe-Cheng Feng
    date accessioned2024-04-27T22:45:59Z
    date available2024-04-27T22:45:59Z
    date issued2024/06/01
    identifier other10.1061-AJRUA6.RUENG-1244.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297444
    description abstractResilience analysis of civil structures and infrastructure systems is a powerful approach to quantifying an object’s ability to prepare for, recover from, and adapt to disruptive events. The resilience is typically measured probabilistically by the integration of the time-variant performance function, which is by nature a stochastic process as it is affected by many uncertain factors such as hazard occurrences and posthazard recoveries. Resilience evaluation could be challenging in many cases with imprecise probability information on the time-variant performance function. In this paper, a novel method for the assessment of imprecise resilience is presented, which deals with resilience problems with nonprobabilistic performance function. The proposed method, producing lower and upper bounds for imprecise resilience, has benefited from that for imprecise reliability as documented in the literature, motivated by the similarity between reliability and resilience. Two types of stochastic processes, namely log-Gamma and lognormal processes, are employed to model the performance function, with which the explicit form of resilience is derived. Moreover, for a planning horizon within which the hazards may occur for multiple times, the incompletely informed performance function results in “time-dependent imprecise resilience,” which is dependent on the duration of the service period (e.g., life cycle) and can also be handled by applying the proposed method. Through examining the time-dependent resilience of a strip foundation in a coastal area subjected to groundwater intrusion in a changing climate, the applicability of the proposed resilience bounding method is demonstrated. The impact of imprecise probability information on resilience is quantified through sensitivity analysis.
    publisherASCE
    titleResilience Assessment under Imprecise Probability
    typeJournal Article
    journal volume10
    journal issue2
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.RUENG-1244
    journal fristpage04024025-1
    journal lastpage04024025-14
    page14
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian