YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Climate Change on Risk Assessment and Effective Maintenance Strategies for Bridge Networks Subjected to Corrosion

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 001::page 04023054-1
    Author:
    Xu Han
    ,
    Dan M. Frangopol
    DOI: 10.1061/AJRUA6.RUENG-1059
    Publisher: ASCE
    Abstract: Given the impact of climate change on the society, climate adaptation for civil structures and infrastructure systems has become an urgent task. To determine an adaptation and maintenance strategy in a rigorous manner, the influence of climate change on structures and infrastructure systems should be quantified. Risk, a performance indicator incorporating both the failure probability of structures and their associated failure consequences, is suitable to be used to characterize the effect of climate change on the performance of structures and infrastructure systems. To date, several studies have been published on climate change effects on structures as well as the associated adaptation and maintenance strategies. However, most of those studies focused on extreme events such as hurricanes and floods, whereas there is little research on the influence of climate change on progressive deterioration mechanisms such as corrosion. In addition, these research efforts placed a greater emphasis on the performance of individual structures than on the performance of groups or networks of structures. In this paper, the effect of climate change on a bridge network (an important type of infrastructure system) subjected to corrosion is quantified. Girder replacement actions are adopted as the maintenance policy. Optimal maintenance solutions for the bridge network considering the effect of climate change were determined using optimization algorithms. The results show that the climate change can have a significant influence on the network risk and can alter the optimum maintenance schedule under a specific maintenance budget.
    • Download: (1.301Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Climate Change on Risk Assessment and Effective Maintenance Strategies for Bridge Networks Subjected to Corrosion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297344
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorXu Han
    contributor authorDan M. Frangopol
    date accessioned2024-04-27T22:43:31Z
    date available2024-04-27T22:43:31Z
    date issued2024/03/01
    identifier other10.1061-AJRUA6.RUENG-1059.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297344
    description abstractGiven the impact of climate change on the society, climate adaptation for civil structures and infrastructure systems has become an urgent task. To determine an adaptation and maintenance strategy in a rigorous manner, the influence of climate change on structures and infrastructure systems should be quantified. Risk, a performance indicator incorporating both the failure probability of structures and their associated failure consequences, is suitable to be used to characterize the effect of climate change on the performance of structures and infrastructure systems. To date, several studies have been published on climate change effects on structures as well as the associated adaptation and maintenance strategies. However, most of those studies focused on extreme events such as hurricanes and floods, whereas there is little research on the influence of climate change on progressive deterioration mechanisms such as corrosion. In addition, these research efforts placed a greater emphasis on the performance of individual structures than on the performance of groups or networks of structures. In this paper, the effect of climate change on a bridge network (an important type of infrastructure system) subjected to corrosion is quantified. Girder replacement actions are adopted as the maintenance policy. Optimal maintenance solutions for the bridge network considering the effect of climate change were determined using optimization algorithms. The results show that the climate change can have a significant influence on the network risk and can alter the optimum maintenance schedule under a specific maintenance budget.
    publisherASCE
    titleImpact of Climate Change on Risk Assessment and Effective Maintenance Strategies for Bridge Networks Subjected to Corrosion
    typeJournal Article
    journal volume10
    journal issue1
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.RUENG-1059
    journal fristpage04023054-1
    journal lastpage04023054-15
    page15
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian