YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Seismic Amplification on Soil–Structure Interaction Problems Based on a 3D DRM-RFEM Framework

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 001::page 04024002-1
    Author:
    Hongjie Fang
    ,
    Zhichao Lai
    ,
    Chuanxiang Qu
    DOI: 10.1061/AJRUA6.RUENG-1181
    Publisher: ASCE
    Abstract: The spatial variability of soil properties is pervasive, and can affect the propagation of seismic waves and the dynamic responses of soil–structure interaction (SSI) systems. This uncertainty is likely to increase the damage state of a structure and its risk of collapse. Additionally, conducting multiscale simulations efficiently in the presence of uncertainties is a pressing concern that must be addressed. In this work, a 3D probabilistic analysis framework for an SSI system considering site effects and spatial variability of soil property (i.e., elastic modulus, E) has been proposed. This framework is based on the random finite element method (RFEM) and domain reduction method (DRM). A multiscale model of a five-story reinforced concrete (RC) frame structure was developed on an ideal 3D slope to verify the effectiveness of the proposed framework. The dynamic responses of the structure were analyzed, and the peak floor acceleration (PFA) and peak interstory drift ratio (PSDR) were selected to estimate the damage state of structures. It was found that the proposed method significantly improves computational efficiency approximately 20 times compared with the direct method. In the regional models, with the increase of the coefficient of variation (COV) of E, the energy of seismic waves becomes more concentrated at the crest and the response spectrum value of medium and long periods increases. In the local SSI model, the soil variability increases the mean value of PSDR, resulting in a more severe damage state compared to the results from the deterministic analysis. Consequently, this study provides some suggestions for engineering practice, and the importance of probabilistic analysis considering spatially variable soils in the SSI problem is highlighted.
    • Download: (4.157Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Seismic Amplification on Soil–Structure Interaction Problems Based on a 3D DRM-RFEM Framework

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297322
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorHongjie Fang
    contributor authorZhichao Lai
    contributor authorChuanxiang Qu
    date accessioned2024-04-27T22:42:57Z
    date available2024-04-27T22:42:57Z
    date issued2024/03/01
    identifier other10.1061-AJRUA6.RUENG-1181.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297322
    description abstractThe spatial variability of soil properties is pervasive, and can affect the propagation of seismic waves and the dynamic responses of soil–structure interaction (SSI) systems. This uncertainty is likely to increase the damage state of a structure and its risk of collapse. Additionally, conducting multiscale simulations efficiently in the presence of uncertainties is a pressing concern that must be addressed. In this work, a 3D probabilistic analysis framework for an SSI system considering site effects and spatial variability of soil property (i.e., elastic modulus, E) has been proposed. This framework is based on the random finite element method (RFEM) and domain reduction method (DRM). A multiscale model of a five-story reinforced concrete (RC) frame structure was developed on an ideal 3D slope to verify the effectiveness of the proposed framework. The dynamic responses of the structure were analyzed, and the peak floor acceleration (PFA) and peak interstory drift ratio (PSDR) were selected to estimate the damage state of structures. It was found that the proposed method significantly improves computational efficiency approximately 20 times compared with the direct method. In the regional models, with the increase of the coefficient of variation (COV) of E, the energy of seismic waves becomes more concentrated at the crest and the response spectrum value of medium and long periods increases. In the local SSI model, the soil variability increases the mean value of PSDR, resulting in a more severe damage state compared to the results from the deterministic analysis. Consequently, this study provides some suggestions for engineering practice, and the importance of probabilistic analysis considering spatially variable soils in the SSI problem is highlighted.
    publisherASCE
    titleInvestigation of Seismic Amplification on Soil–Structure Interaction Problems Based on a 3D DRM-RFEM Framework
    typeJournal Article
    journal volume10
    journal issue1
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.RUENG-1181
    journal fristpage04024002-1
    journal lastpage04024002-16
    page16
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian