YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimation of Economic Impacts of Climate-Driven Hazards Using Stochastic Process Model

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 001::page 04023059-1
    Author:
    Rituraj Bhadra
    ,
    Mahesh Pandey
    DOI: 10.1061/AJRUA6.RUENG-1121
    Publisher: ASCE
    Abstract: Projections using global climate models indicate that climate change will influence the patterns of natural hazards, such as thunderstorms, atmospheric river landfalls, extreme droughts, and ocean waves. The frequency and intensity of these hazards are expected to increase gradually in proportion to global temperature. The design principles based on the philosophy of cost optimization need to be updated to accommodate the nonstationarity of the load processes, primarily because the prevalent cost analysis methods in the literature predominantly assume that the loads are stationary. This study provides a novel methodology for calculating the first two moments and the distribution of the economic losses for nonstationary loading processes. Here, the load processes are modeled as a nonhomogeneous Poisson process (NHPP) with time-dependent rates. The presented methodology is applied to estimate the losses due to tornadoes in Ontario, Canada and heat waves in US cities. It was found that if adaptive measures are applied to increase the capacity of structures, the losses due to these climate-driven hazards can be significantly reduced. For example, if mitigation strategies are employed in Ontario, such that the effect of tornadoes with wind speeds lower than 50.3  m/s becomes negligible, then the tornado losses until 2100 can be reduced by 66%.
    • Download: (1.115Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimation of Economic Impacts of Climate-Driven Hazards Using Stochastic Process Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296990
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorRituraj Bhadra
    contributor authorMahesh Pandey
    date accessioned2024-04-27T22:34:50Z
    date available2024-04-27T22:34:50Z
    date issued2024/03/01
    identifier other10.1061-AJRUA6.RUENG-1121.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296990
    description abstractProjections using global climate models indicate that climate change will influence the patterns of natural hazards, such as thunderstorms, atmospheric river landfalls, extreme droughts, and ocean waves. The frequency and intensity of these hazards are expected to increase gradually in proportion to global temperature. The design principles based on the philosophy of cost optimization need to be updated to accommodate the nonstationarity of the load processes, primarily because the prevalent cost analysis methods in the literature predominantly assume that the loads are stationary. This study provides a novel methodology for calculating the first two moments and the distribution of the economic losses for nonstationary loading processes. Here, the load processes are modeled as a nonhomogeneous Poisson process (NHPP) with time-dependent rates. The presented methodology is applied to estimate the losses due to tornadoes in Ontario, Canada and heat waves in US cities. It was found that if adaptive measures are applied to increase the capacity of structures, the losses due to these climate-driven hazards can be significantly reduced. For example, if mitigation strategies are employed in Ontario, such that the effect of tornadoes with wind speeds lower than 50.3  m/s becomes negligible, then the tornado losses until 2100 can be reduced by 66%.
    publisherASCE
    titleEstimation of Economic Impacts of Climate-Driven Hazards Using Stochastic Process Model
    typeJournal Article
    journal volume10
    journal issue1
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.RUENG-1121
    journal fristpage04023059-1
    journal lastpage04023059-11
    page11
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian