YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Semiempirical Model of Vibration-Induced Ground Deformations due to Impact Pile Driving

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 011::page 04023110-1
    Author:
    Berk Turkel
    ,
    Jorge E. Orozco-Herrera
    ,
    Luis G. Arboleda-Monsalve
    ,
    Boo Hyun Nam
    ,
    Larry Jones
    DOI: 10.1061/JGGEFK.GTENG-11638
    Publisher: ASCE
    Abstract: A semiempirical method to determine ground deformations and vibrations induced by impact pile driving in sandy soil conditions is presented in this study. Field data during installation of precast prestressed concrete piles with impact hammers were obtained in terms of ground deformations and peak particle velocities. Semiempirical equations are proposed using a combination of field measurements and numerical analyses to consider the following triggering factors for the ground response due to impact pile driving operations: (1) rated energy of the hammer, (2) scaled distance from the pile, (3) pre-drilling depth, and (4) relative void ratio, which is closely related to the relative density. The numerical component of this framework was developed adopting a continuous pile driving modeling approach coupled with the Updated Lagrangian approach to deal with large deformations and an advanced constitutive soil model (i.e., hypoplasticity for sands enhanced with the intergranular strain concept) capable of reproducing changes in soil void ratios during pile installation. The model parameters were adopted by computationally matching published nonlinear shear modulus degradation curves of the granular layers. A highly disturbed zone close to the pile was computed arising from pile driving-induced soil liquefaction causing large variations in computed void ratios. It was concluded that even if vibration levels are below typical vibration limits defined by regulatory agencies, large levels of ground deformations can still occur. The proposed method is validated in terms of ground vibrations and deformations induced by impact pile driving using field measurements, published vibration attenuation curves, and vibration-induced ground surface settlement prediction methods.
    • Download: (5.493Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Semiempirical Model of Vibration-Induced Ground Deformations due to Impact Pile Driving

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296052
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorBerk Turkel
    contributor authorJorge E. Orozco-Herrera
    contributor authorLuis G. Arboleda-Monsalve
    contributor authorBoo Hyun Nam
    contributor authorLarry Jones
    date accessioned2024-04-27T20:49:49Z
    date available2024-04-27T20:49:49Z
    date issued2023/11/01
    identifier other10.1061-JGGEFK.GTENG-11638.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296052
    description abstractA semiempirical method to determine ground deformations and vibrations induced by impact pile driving in sandy soil conditions is presented in this study. Field data during installation of precast prestressed concrete piles with impact hammers were obtained in terms of ground deformations and peak particle velocities. Semiempirical equations are proposed using a combination of field measurements and numerical analyses to consider the following triggering factors for the ground response due to impact pile driving operations: (1) rated energy of the hammer, (2) scaled distance from the pile, (3) pre-drilling depth, and (4) relative void ratio, which is closely related to the relative density. The numerical component of this framework was developed adopting a continuous pile driving modeling approach coupled with the Updated Lagrangian approach to deal with large deformations and an advanced constitutive soil model (i.e., hypoplasticity for sands enhanced with the intergranular strain concept) capable of reproducing changes in soil void ratios during pile installation. The model parameters were adopted by computationally matching published nonlinear shear modulus degradation curves of the granular layers. A highly disturbed zone close to the pile was computed arising from pile driving-induced soil liquefaction causing large variations in computed void ratios. It was concluded that even if vibration levels are below typical vibration limits defined by regulatory agencies, large levels of ground deformations can still occur. The proposed method is validated in terms of ground vibrations and deformations induced by impact pile driving using field measurements, published vibration attenuation curves, and vibration-induced ground surface settlement prediction methods.
    publisherASCE
    titleSemiempirical Model of Vibration-Induced Ground Deformations due to Impact Pile Driving
    typeJournal Article
    journal volume149
    journal issue11
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-11638
    journal fristpage04023110-1
    journal lastpage04023110-20
    page20
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian