YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Classification of Sand Using Deep Learning

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 011::page 04023103-1
    Author:
    Linzhu Li
    ,
    Magued Iskander
    DOI: 10.1061/JGGEFK.GTENG-11503
    Publisher: ASCE
    Abstract: Identifying sands is an important requirement in many geotechnical exploration projects. Knowledge of the sand type can help in estimating the physical and mechanical properties of a soil. Previous studies revealed that machine learning approaches using neural networks (NN) can correctly identify up to 75% of individual sand particles using size and shape descriptors. This study explores the efficacy of deep learning methods for automatically classifying sand types from individual images of sand particles. Dynamic image analysis (DIA) was employed to generate a large data set of sand particle images, which were then used for training a deep learning model known as convolutional neural networks (CNN). The analysis was based on 40,000 binary particle images for twenty types of sand. The work demonstrates that computer vision has a remarkable ability to automatically classify 64% of individual sand particles among 20 types of sand, the accuracy for sand clusters can reach up to 100%, when a CNN model augmented with size and shape data was employed. The effects of domain size, size and shape parameters, and the selected CNN model on the classification accuracy were also investigated. The results demonstrate that sand classification using a larger number of sand types resulted in a lower classification accuracy. Classification accuracy of individual particles achieved using CNN were 10%–15% better than those achieved using NN. CNN can automatically and adaptively learn the spatial hierarchy of features which is superior to the handcrafted size and shape parameters, used by NN for identifying sand particles. The study suggests that classification accuracy benefits from data augmentation use of more particle orientations, even at the cost of trimming some particles, and suffers from reduction in image resolution. While model training requires a lot of computational work, a pretrained CNN model may potentially be tuned to run on mobile phones, which points to the potential for real-time field deployment to enable automatic soil classification on-site.
    • Download: (4.973Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Classification of Sand Using Deep Learning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296049
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorLinzhu Li
    contributor authorMagued Iskander
    date accessioned2024-04-27T20:49:45Z
    date available2024-04-27T20:49:45Z
    date issued2023/11/01
    identifier other10.1061-JGGEFK.GTENG-11503.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296049
    description abstractIdentifying sands is an important requirement in many geotechnical exploration projects. Knowledge of the sand type can help in estimating the physical and mechanical properties of a soil. Previous studies revealed that machine learning approaches using neural networks (NN) can correctly identify up to 75% of individual sand particles using size and shape descriptors. This study explores the efficacy of deep learning methods for automatically classifying sand types from individual images of sand particles. Dynamic image analysis (DIA) was employed to generate a large data set of sand particle images, which were then used for training a deep learning model known as convolutional neural networks (CNN). The analysis was based on 40,000 binary particle images for twenty types of sand. The work demonstrates that computer vision has a remarkable ability to automatically classify 64% of individual sand particles among 20 types of sand, the accuracy for sand clusters can reach up to 100%, when a CNN model augmented with size and shape data was employed. The effects of domain size, size and shape parameters, and the selected CNN model on the classification accuracy were also investigated. The results demonstrate that sand classification using a larger number of sand types resulted in a lower classification accuracy. Classification accuracy of individual particles achieved using CNN were 10%–15% better than those achieved using NN. CNN can automatically and adaptively learn the spatial hierarchy of features which is superior to the handcrafted size and shape parameters, used by NN for identifying sand particles. The study suggests that classification accuracy benefits from data augmentation use of more particle orientations, even at the cost of trimming some particles, and suffers from reduction in image resolution. While model training requires a lot of computational work, a pretrained CNN model may potentially be tuned to run on mobile phones, which points to the potential for real-time field deployment to enable automatic soil classification on-site.
    publisherASCE
    titleClassification of Sand Using Deep Learning
    typeJournal Article
    journal volume149
    journal issue11
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-11503
    journal fristpage04023103-1
    journal lastpage04023103-19
    page19
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian