YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Displacement Hardening on the Seismic Design of Anchored Walls

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 011::page 04023112-1
    Author:
    Giorgio Caputo
    ,
    Riccardo Conti
    ,
    Giulia M. B. Viggiani
    DOI: 10.1061/JGGEFK.GTENG-11442
    Publisher: ASCE
    Abstract: A reliable assessment of earthquake-induced permanent displacements is a fundamental step for both displacement-based and force-based methods applied to the seismic design of embedded anchored walls. Acceleration reduction factors recommended by the codes for a force-based design of these structures derive from parametric studies of the performance of gravity walls or slopes. This may lead to either conservative or unconservative results and is certainly misleading from the point of view of the physics of the problem. Based on the results of an extensive numerical study, this work clarifies the mechanisms by which anchored walls accumulate permanent displacements during earthquakes, showing that full mobilization of soil passive strength requires displacements of the order ur/H≈1%–2%, making the assumption of rigid-perfectly plastic behavior of the system unsuitable. Moreover, both the critical acceleration and the pattern of final displacements depend on the plastic mechanism effectively activated within the soil-wall-anchor system. The issue of the proper choice of performance factors to be used in a force-based design of anchored walls is also addressed, and a new method is outlined for a preliminary calculation of the permanent displacements of the wall. Finally, the paper critically reviews two methods recently proposed in the literature to compute earthquake-induced wall displacements. All three methods account for the soil-wall system nonlinearity and hardening during the earthquake. The results discussed herein, together with the complementary work presented by the same authors in a companion paper, provide a thorough conceptual framework for the performance-based seismic design of anchored walls.
    • Download: (4.981Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Displacement Hardening on the Seismic Design of Anchored Walls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296046
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorGiorgio Caputo
    contributor authorRiccardo Conti
    contributor authorGiulia M. B. Viggiani
    date accessioned2024-04-27T20:49:40Z
    date available2024-04-27T20:49:40Z
    date issued2023/11/01
    identifier other10.1061-JGGEFK.GTENG-11442.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296046
    description abstractA reliable assessment of earthquake-induced permanent displacements is a fundamental step for both displacement-based and force-based methods applied to the seismic design of embedded anchored walls. Acceleration reduction factors recommended by the codes for a force-based design of these structures derive from parametric studies of the performance of gravity walls or slopes. This may lead to either conservative or unconservative results and is certainly misleading from the point of view of the physics of the problem. Based on the results of an extensive numerical study, this work clarifies the mechanisms by which anchored walls accumulate permanent displacements during earthquakes, showing that full mobilization of soil passive strength requires displacements of the order ur/H≈1%–2%, making the assumption of rigid-perfectly plastic behavior of the system unsuitable. Moreover, both the critical acceleration and the pattern of final displacements depend on the plastic mechanism effectively activated within the soil-wall-anchor system. The issue of the proper choice of performance factors to be used in a force-based design of anchored walls is also addressed, and a new method is outlined for a preliminary calculation of the permanent displacements of the wall. Finally, the paper critically reviews two methods recently proposed in the literature to compute earthquake-induced wall displacements. All three methods account for the soil-wall system nonlinearity and hardening during the earthquake. The results discussed herein, together with the complementary work presented by the same authors in a companion paper, provide a thorough conceptual framework for the performance-based seismic design of anchored walls.
    publisherASCE
    titleEffects of Displacement Hardening on the Seismic Design of Anchored Walls
    typeJournal Article
    journal volume149
    journal issue11
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-11442
    journal fristpage04023112-1
    journal lastpage04023112-15
    page15
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian