YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Energy-Based Liquefaction Triggering Model

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 011::page 04023105-1
    Author:
    K. J. Ulmer
    ,
    R. A. Green
    ,
    A. Rodriguez-Marek
    ,
    J. K. Mitchell
    DOI: 10.1061/JGGEFK.GTENG-11402
    Publisher: ASCE
    Abstract: The most commonly used approach for evaluating liquefaction triggering is via stress-based simplified models. Proposed herein is a model for evaluating liquefaction triggering where the imposed loading and ability of the soil to resist liquefaction are quantified in terms of normalized dissipated energy per unit volume of soil (ΔW/σvo′), computed within a total stress framework. The proposed model overcomes limitations of many previously proposed energy-based triggering models. Additionally, the proposed energy-based model unites concepts from both stress-based and strain-based procedures, overcoming some of their limitations, and in its simplified form is implemented similarly to the simplified stress-based models. An updated field case history database is used to develop probabilistic limit-state curves. These limit-state curves express ΔW/σvo′ required to trigger liquefaction as a function of corrected cone penetration test tip resistance (qc1Ncs) for different probabilities of liquefaction (PL) and have comparable predictive abilities to stress-based limit-state curves in terms of number of correct predictions for the cases analyzed. However, because dissipated energy is a scalar quantity, multidirectional shaking and other effects such as soil–structure interaction, nonvertical wave fields, and topographic site effects can readily be accounted for. Additionally, the applicability of the proposed triggering curve is not limited to earthquake loading but, rather, can be used in relation to other sources of vibrations (e.g., construction vibrations and explosive loading, among others).
    • Download: (1.582Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Energy-Based Liquefaction Triggering Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296043
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorK. J. Ulmer
    contributor authorR. A. Green
    contributor authorA. Rodriguez-Marek
    contributor authorJ. K. Mitchell
    date accessioned2024-04-27T20:49:36Z
    date available2024-04-27T20:49:36Z
    date issued2023/11/01
    identifier other10.1061-JGGEFK.GTENG-11402.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296043
    description abstractThe most commonly used approach for evaluating liquefaction triggering is via stress-based simplified models. Proposed herein is a model for evaluating liquefaction triggering where the imposed loading and ability of the soil to resist liquefaction are quantified in terms of normalized dissipated energy per unit volume of soil (ΔW/σvo′), computed within a total stress framework. The proposed model overcomes limitations of many previously proposed energy-based triggering models. Additionally, the proposed energy-based model unites concepts from both stress-based and strain-based procedures, overcoming some of their limitations, and in its simplified form is implemented similarly to the simplified stress-based models. An updated field case history database is used to develop probabilistic limit-state curves. These limit-state curves express ΔW/σvo′ required to trigger liquefaction as a function of corrected cone penetration test tip resistance (qc1Ncs) for different probabilities of liquefaction (PL) and have comparable predictive abilities to stress-based limit-state curves in terms of number of correct predictions for the cases analyzed. However, because dissipated energy is a scalar quantity, multidirectional shaking and other effects such as soil–structure interaction, nonvertical wave fields, and topographic site effects can readily be accounted for. Additionally, the applicability of the proposed triggering curve is not limited to earthquake loading but, rather, can be used in relation to other sources of vibrations (e.g., construction vibrations and explosive loading, among others).
    publisherASCE
    titleEnergy-Based Liquefaction Triggering Model
    typeJournal Article
    journal volume149
    journal issue11
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-11402
    journal fristpage04023105-1
    journal lastpage04023105-16
    page16
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2023:;Volume ( 149 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian