YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analyzing Unsteady Turbomachinery Flow Simulations With Mixing Entropy

    Source: Journal of Turbomachinery:;2024:;volume( 146 ):;issue: 007::page 71004-1
    Author:
    Frey, Christian
    ,
    Geihe, Benedict
    ,
    Junge, Laura
    DOI: 10.1115/1.4064839
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The prediction of unsteady aerodynamic loads is a central problem during the design of turbomachinery. Over the last 20 years, harmonic balance methods have been shown to be highly efficient for this task. A CPU-cost optimal setup of a harmonic balance simulation, however, requires knowledge of relevant harmonics. In the case of a single blade row with a periodic disturbance this question amounts to the classical problem of harmonic convergence, a problem which is solely due to the nonlinearity of the unsteady flow physics. In contrast, for multi-stage configurations, the choice of harmonics is further complicated by the fact that the interactions of disturbances with blade rows may give rise to a vast spectrum of harmonics that possibly have important modal content, e.g., Tyler–Sofrin modes. The aim of this paper is to show that the mixing entropy attributed to circumferential modes of a given harmonic can serve as a disturbance metric on the basis of which a criterion could be derived whether a certain harmonic should be included or not. The idea is based on the observation that the entropy due to the temporal and circumferential mixing of the flow at a blade row interface may be decomposed, up to third-order terms, into independent contributions from different frequencies and mode orders. For a given harmonic balance (and steady) flow result, the mixing entropy attributed to modes that are simply mixed out, rather than resolved in the neighboring row, is shown to be a natural indicator of a potential inaccuracy. We present important features of the mixing entropy for unsteady disturbances, in particular a close relationship to sound power for acoustic modes. The problem of mode selection in a 1.5-stage compressor configuration serves as a practical example to illustrate our findings.
    • Download: (994.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analyzing Unsteady Turbomachinery Flow Simulations With Mixing Entropy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295983
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorFrey, Christian
    contributor authorGeihe, Benedict
    contributor authorJunge, Laura
    date accessioned2024-04-24T22:51:00Z
    date available2024-04-24T22:51:00Z
    date copyright3/18/2024 12:00:00 AM
    date issued2024
    identifier issn0889-504X
    identifier otherturbo_146_7_071004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295983
    description abstractThe prediction of unsteady aerodynamic loads is a central problem during the design of turbomachinery. Over the last 20 years, harmonic balance methods have been shown to be highly efficient for this task. A CPU-cost optimal setup of a harmonic balance simulation, however, requires knowledge of relevant harmonics. In the case of a single blade row with a periodic disturbance this question amounts to the classical problem of harmonic convergence, a problem which is solely due to the nonlinearity of the unsteady flow physics. In contrast, for multi-stage configurations, the choice of harmonics is further complicated by the fact that the interactions of disturbances with blade rows may give rise to a vast spectrum of harmonics that possibly have important modal content, e.g., Tyler–Sofrin modes. The aim of this paper is to show that the mixing entropy attributed to circumferential modes of a given harmonic can serve as a disturbance metric on the basis of which a criterion could be derived whether a certain harmonic should be included or not. The idea is based on the observation that the entropy due to the temporal and circumferential mixing of the flow at a blade row interface may be decomposed, up to third-order terms, into independent contributions from different frequencies and mode orders. For a given harmonic balance (and steady) flow result, the mixing entropy attributed to modes that are simply mixed out, rather than resolved in the neighboring row, is shown to be a natural indicator of a potential inaccuracy. We present important features of the mixing entropy for unsteady disturbances, in particular a close relationship to sound power for acoustic modes. The problem of mode selection in a 1.5-stage compressor configuration serves as a practical example to illustrate our findings.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalyzing Unsteady Turbomachinery Flow Simulations With Mixing Entropy
    typeJournal Paper
    journal volume146
    journal issue7
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4064839
    journal fristpage71004-1
    journal lastpage71004-11
    page11
    treeJournal of Turbomachinery:;2024:;volume( 146 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian