YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation of the Interaction of a Circumferential Groove Casing Treatment and Near-Tip Modifications for a Highly Loaded Low-Speed Rotor Under the Influence of Double Leakage

    Source: Journal of Turbomachinery:;2024:;volume( 146 ):;issue: 007::page 71001-1
    Author:
    Eckel, Jannik
    ,
    Reisinger, Lukas
    ,
    von Jeinsen, Philipp
    ,
    Gümmer, Volker
    DOI: 10.1115/1.4063756
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Eckel et al. (2023, “Numerical Investigation of Near-Tip Modifications for a Highly Loaded Low-Speed Rotor Under the Influence of Double Leakage,” ASME J. Turbomach., 145(4), p. 041003) proposed using a convex-profiled pressure side region close to the tip, known as belly, as an effective method of extending the operating range of low-speed axial compressor rotors. In the literature, circumferential grooves are another well-described technique for improving the stable working range of a compressor rotor. No research has been conducted to date to determine which modification is more effective and how they interact when used together. This paper numerically investigates the influence of circumferential casing grooves and near-tip modifications on the flow field in the tip region of a highly loaded, low-speed axial compressor rotor. The simulated rotor consists of a hybrid blade configuration with a tandem profile in the mid-span region and single blade profiles near the endwalls. The single blade profile close to the tip features three different convex-profiled elements, which differ in their respective thicknesses. The aim of the numerical analysis is to explain the interaction of the secondary flow phenomena when applying the circumferential grooves and the belly geometries. For this purpose, eight different axial positions of the circumferential groove are investigated for each of the three belly configurations. These are arranged in 10% increments from −7% to 63% along the axial rotor tip chord. The potential of the concept is evaluated by a numerical investigation in the 1.5-stage setup with an inlet guide vane and tandem stator. It is shown that a circumferential groove can further increase the operating range for all belly configurations when positioned axially correctly. In this respect, equalization of the near-casing deceleration in the circumferential direction leads to an extension of the stall margin with both modifications. Concentrated regions of low-momentum fluid with a large extent in the radial direction should be avoided consequently. A tip vortex stability factor is introduced to quantitatively evaluate this effect. The operating range can thus already be estimated in a first approximation at the design point. In general, the groove and belly should be positioned where the tip leakage vortex meets the pressure side of the adjacent blade. If the groove is used together with the belly, the leading edge of the former should be situated at the location of maximum thickness of the near-tip modification. The effects of the circumferential groove and the belly are then superimposed. If using only one modification, the belly appears better suited for ensuring an extension of the operating range while maintaining high efficiencies.
    • Download: (2.049Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation of the Interaction of a Circumferential Groove Casing Treatment and Near-Tip Modifications for a Highly Loaded Low-Speed Rotor Under the Influence of Double Leakage

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295981
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorEckel, Jannik
    contributor authorReisinger, Lukas
    contributor authorvon Jeinsen, Philipp
    contributor authorGümmer, Volker
    date accessioned2024-04-24T22:50:54Z
    date available2024-04-24T22:50:54Z
    date copyright2/26/2024 12:00:00 AM
    date issued2024
    identifier issn0889-504X
    identifier otherturbo_146_7_071001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295981
    description abstractEckel et al. (2023, “Numerical Investigation of Near-Tip Modifications for a Highly Loaded Low-Speed Rotor Under the Influence of Double Leakage,” ASME J. Turbomach., 145(4), p. 041003) proposed using a convex-profiled pressure side region close to the tip, known as belly, as an effective method of extending the operating range of low-speed axial compressor rotors. In the literature, circumferential grooves are another well-described technique for improving the stable working range of a compressor rotor. No research has been conducted to date to determine which modification is more effective and how they interact when used together. This paper numerically investigates the influence of circumferential casing grooves and near-tip modifications on the flow field in the tip region of a highly loaded, low-speed axial compressor rotor. The simulated rotor consists of a hybrid blade configuration with a tandem profile in the mid-span region and single blade profiles near the endwalls. The single blade profile close to the tip features three different convex-profiled elements, which differ in their respective thicknesses. The aim of the numerical analysis is to explain the interaction of the secondary flow phenomena when applying the circumferential grooves and the belly geometries. For this purpose, eight different axial positions of the circumferential groove are investigated for each of the three belly configurations. These are arranged in 10% increments from −7% to 63% along the axial rotor tip chord. The potential of the concept is evaluated by a numerical investigation in the 1.5-stage setup with an inlet guide vane and tandem stator. It is shown that a circumferential groove can further increase the operating range for all belly configurations when positioned axially correctly. In this respect, equalization of the near-casing deceleration in the circumferential direction leads to an extension of the stall margin with both modifications. Concentrated regions of low-momentum fluid with a large extent in the radial direction should be avoided consequently. A tip vortex stability factor is introduced to quantitatively evaluate this effect. The operating range can thus already be estimated in a first approximation at the design point. In general, the groove and belly should be positioned where the tip leakage vortex meets the pressure side of the adjacent blade. If the groove is used together with the belly, the leading edge of the former should be situated at the location of maximum thickness of the near-tip modification. The effects of the circumferential groove and the belly are then superimposed. If using only one modification, the belly appears better suited for ensuring an extension of the operating range while maintaining high efficiencies.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation of the Interaction of a Circumferential Groove Casing Treatment and Near-Tip Modifications for a Highly Loaded Low-Speed Rotor Under the Influence of Double Leakage
    typeJournal Paper
    journal volume146
    journal issue7
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4063756
    journal fristpage71001-1
    journal lastpage71001-12
    page12
    treeJournal of Turbomachinery:;2024:;volume( 146 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian