YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    TPIV Experimental Investigation of Film Coolant-to-Mainstream Interaction From Shaped Cooling Holes With Various Inlet Geometries

    Source: Journal of Turbomachinery:;2024:;volume( 146 ):;issue: 005::page 51006-1
    Author:
    Wang, Hanlin
    ,
    Wright, Lesley M.
    DOI: 10.1115/1.4064261
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this investigation, multiple sets of time-averaged tomographic particle imaging velocimetry measurements are completed for laid-back, fan-shaped film cooling holes with “racetrack” shaped inlets. Traditional 10-10-10, laid-back, fan-shaped holes are inclined 30 deg to the mainstream flow on a flat plate. The inlet cross section varies from round to two elongated racetrack shapes. The cross-sectional area and the outlet-to-inlet area ratio for all the geometries are held constant. The flat plate is installed in a low-speed wind tunnel with a mainstream turbulence intensity of 8% and an average velocity of 21.6 m/s. The blowing ratios of the film jets range from 0.6 to 1.5 and the density ratio is 1. The Reynolds number of the cooling jet varies from 2600 to 8400. The characteristics of the resulting flowfield are coupled with the detailed film cooling effectiveness distributions. It can be noted from the results that the counter-rotating vortex pair generated by the 2:1 inlet is the closest to the surface and weakest in strength, likely caused by the minimum peak jet momentum of the three. The Reynolds stresses downstream of the 2:1 and 4:1 inlets are significantly lower than those downstream of the shaped hole with a round inlet. An inverse relation between volumetric turbulence accumulation (TA), and surface effectiveness (η), can be correlated for the blowing ratios considered. The turbulence accumulation term can thus be used to evaluate the performance of a film cooling hole design with flowfield data.
    • Download: (2.408Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      TPIV Experimental Investigation of Film Coolant-to-Mainstream Interaction From Shaped Cooling Holes With Various Inlet Geometries

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295970
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorWang, Hanlin
    contributor authorWright, Lesley M.
    date accessioned2024-04-24T22:50:31Z
    date available2024-04-24T22:50:31Z
    date copyright1/16/2024 12:00:00 AM
    date issued2024
    identifier issn0889-504X
    identifier otherturbo_146_5_051006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295970
    description abstractIn this investigation, multiple sets of time-averaged tomographic particle imaging velocimetry measurements are completed for laid-back, fan-shaped film cooling holes with “racetrack” shaped inlets. Traditional 10-10-10, laid-back, fan-shaped holes are inclined 30 deg to the mainstream flow on a flat plate. The inlet cross section varies from round to two elongated racetrack shapes. The cross-sectional area and the outlet-to-inlet area ratio for all the geometries are held constant. The flat plate is installed in a low-speed wind tunnel with a mainstream turbulence intensity of 8% and an average velocity of 21.6 m/s. The blowing ratios of the film jets range from 0.6 to 1.5 and the density ratio is 1. The Reynolds number of the cooling jet varies from 2600 to 8400. The characteristics of the resulting flowfield are coupled with the detailed film cooling effectiveness distributions. It can be noted from the results that the counter-rotating vortex pair generated by the 2:1 inlet is the closest to the surface and weakest in strength, likely caused by the minimum peak jet momentum of the three. The Reynolds stresses downstream of the 2:1 and 4:1 inlets are significantly lower than those downstream of the shaped hole with a round inlet. An inverse relation between volumetric turbulence accumulation (TA), and surface effectiveness (η), can be correlated for the blowing ratios considered. The turbulence accumulation term can thus be used to evaluate the performance of a film cooling hole design with flowfield data.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTPIV Experimental Investigation of Film Coolant-to-Mainstream Interaction From Shaped Cooling Holes With Various Inlet Geometries
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4064261
    journal fristpage51006-1
    journal lastpage51006-12
    page12
    treeJournal of Turbomachinery:;2024:;volume( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian