YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Water-to-Air Mass Ratio on Long-Term Washing Efficiency and Erosion Risk in an Axial Compressor Under Online Washing Conditions

    Source: Journal of Turbomachinery:;2024:;volume( 146 ):;issue: 005::page 51005-1
    Author:
    Agati, Giuliano
    ,
    Venturini, Paolo
    ,
    Gabriele, Serena
    ,
    Rispoli, Franco
    ,
    Borello, Domenico
    DOI: 10.1115/1.4064225
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: One of the main reasons for gas turbines’ performance losses is the deposition of dirt on the compressor blades. Dirt deposit has to be periodically removed to keep the engine performance as high as possible. This is the reason motivating the presence of online water washing systems in most compressor gas turbines. Such systems aim at cleaning the compressor blades to recover efficiency; thus, the larger the water flow, the better it is assumed the compressor is cleaned (fixing all the other conditions). In the present work, we simulate the long-term behavior of a real axial compressor, from the inlet to the first-stage rotor, subject to online water washing with different water flowrates. The frozen rotor approach is adopted to solve the flow field in the rotor region. Simulations are performed by using the unsteady k-ɛ realizable model coupled with a Lagrangian tracking of the injected liquid phase. Water droplet erosion is handled by using a semi-empirical model developed by the authors. In each simulation, 504,000 parcels have been tracked, providing statistically reliable predictions. To simulate the long-term evolution of the washing process, a discrete mesh morphing technique coupled with the use of specific scale factors is adopted. Each of the tested configurations is composed of three successive erosive steps up to the blade compressor end-of-life. By varying the water-to-air mass fraction (WAMF*), six different injection configurations are assessed in terms of long-time average washing efficiency and erosion risk. The results predicted show the dependence of the considered washing indices on water mass flowrate and set the stage for the development of a washing optimization tool, which can help the design and management processes. In scenarios where washing indices are given minimal importance and the objective is to reduce the risk of erosion, the optimal injection configuration was shown to correspond to a WAMF* value of 0.250. Conversely, when washing efficiency is prioritized, the optimal injection configuration has been shown to correspond to the case where WAMF* = 0.750.
    • Download: (1.586Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Water-to-Air Mass Ratio on Long-Term Washing Efficiency and Erosion Risk in an Axial Compressor Under Online Washing Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295969
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorAgati, Giuliano
    contributor authorVenturini, Paolo
    contributor authorGabriele, Serena
    contributor authorRispoli, Franco
    contributor authorBorello, Domenico
    date accessioned2024-04-24T22:50:30Z
    date available2024-04-24T22:50:30Z
    date copyright1/16/2024 12:00:00 AM
    date issued2024
    identifier issn0889-504X
    identifier otherturbo_146_5_051005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295969
    description abstractOne of the main reasons for gas turbines’ performance losses is the deposition of dirt on the compressor blades. Dirt deposit has to be periodically removed to keep the engine performance as high as possible. This is the reason motivating the presence of online water washing systems in most compressor gas turbines. Such systems aim at cleaning the compressor blades to recover efficiency; thus, the larger the water flow, the better it is assumed the compressor is cleaned (fixing all the other conditions). In the present work, we simulate the long-term behavior of a real axial compressor, from the inlet to the first-stage rotor, subject to online water washing with different water flowrates. The frozen rotor approach is adopted to solve the flow field in the rotor region. Simulations are performed by using the unsteady k-ɛ realizable model coupled with a Lagrangian tracking of the injected liquid phase. Water droplet erosion is handled by using a semi-empirical model developed by the authors. In each simulation, 504,000 parcels have been tracked, providing statistically reliable predictions. To simulate the long-term evolution of the washing process, a discrete mesh morphing technique coupled with the use of specific scale factors is adopted. Each of the tested configurations is composed of three successive erosive steps up to the blade compressor end-of-life. By varying the water-to-air mass fraction (WAMF*), six different injection configurations are assessed in terms of long-time average washing efficiency and erosion risk. The results predicted show the dependence of the considered washing indices on water mass flowrate and set the stage for the development of a washing optimization tool, which can help the design and management processes. In scenarios where washing indices are given minimal importance and the objective is to reduce the risk of erosion, the optimal injection configuration was shown to correspond to a WAMF* value of 0.250. Conversely, when washing efficiency is prioritized, the optimal injection configuration has been shown to correspond to the case where WAMF* = 0.750.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Water-to-Air Mass Ratio on Long-Term Washing Efficiency and Erosion Risk in an Axial Compressor Under Online Washing Conditions
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4064225
    journal fristpage51005-1
    journal lastpage51005-12
    page12
    treeJournal of Turbomachinery:;2024:;volume( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian