YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Unsteady Pre-Stall Behavior in a Centrifugal Compressor With Vaned Diffuser

    Source: Journal of Turbomachinery:;2023:;volume( 146 ):;issue: 004::page 41006-1
    Author:
    Suzuki, Yutaro
    ,
    Fujisawa, Nobumichi
    ,
    Ohta, Yutaka
    DOI: 10.1115/1.4064136
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Unsteady pre-stall behavior in a centrifugal compressor with a vaned diffuser was investigated by experimental and numerical analysis. The pre-stall disturbances occurred at a slightly higher flow coefficient at the stall point in the diffuser region. Five disturbances occurred in the circumferential direction, and each rotated at approximately 1.7%N at this flow coefficient. Numerical analysis showed that five stall cells rotated at approximately 2.0%N within the diffuser passage. To understand this pre-stall phenomenon, we focused on the rotation mechanism and initiation process of the five-cell rotating stalls. Each of the five-cell stalls was found to rotate by the following mechanism. When the preceding low-velocity region moved to an adjacent passage, the high-velocity region was circumferentially pushed by the low-velocity area and reached the following passage. The incoming flow collided with the backflow around the throat area, and the flow bent at the diffuser inlet of the passage. Consequently, the incidence angle toward the adjacent passage increased, and a separation was induced at the leading edge of the succeeding diffuser vane. Subsequently, the mass flowrate of the succeeding passage started to decrease. These phenomena occurred sequentially, causing the five-cell stalls to rotate. Five stationary low-velocity regions that did not rotate were observed before the initiation of the five-cell rotating stalls. When the outlet mass flowrate decreased, a one-cell rotating stall appeared within the diffuser passage. It provided a low-energy fluid to the diffuser passages where the low-velocity regions existed. Subsequently, five low-velocity regions were clearly formed, which started rotating according to the rotating mechanism explained above.
    • Download: (2.490Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Unsteady Pre-Stall Behavior in a Centrifugal Compressor With Vaned Diffuser

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295961
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorSuzuki, Yutaro
    contributor authorFujisawa, Nobumichi
    contributor authorOhta, Yutaka
    date accessioned2024-04-24T22:50:17Z
    date available2024-04-24T22:50:17Z
    date copyright12/15/2023 12:00:00 AM
    date issued2023
    identifier issn0889-504X
    identifier otherturbo_146_4_041006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295961
    description abstractUnsteady pre-stall behavior in a centrifugal compressor with a vaned diffuser was investigated by experimental and numerical analysis. The pre-stall disturbances occurred at a slightly higher flow coefficient at the stall point in the diffuser region. Five disturbances occurred in the circumferential direction, and each rotated at approximately 1.7%N at this flow coefficient. Numerical analysis showed that five stall cells rotated at approximately 2.0%N within the diffuser passage. To understand this pre-stall phenomenon, we focused on the rotation mechanism and initiation process of the five-cell rotating stalls. Each of the five-cell stalls was found to rotate by the following mechanism. When the preceding low-velocity region moved to an adjacent passage, the high-velocity region was circumferentially pushed by the low-velocity area and reached the following passage. The incoming flow collided with the backflow around the throat area, and the flow bent at the diffuser inlet of the passage. Consequently, the incidence angle toward the adjacent passage increased, and a separation was induced at the leading edge of the succeeding diffuser vane. Subsequently, the mass flowrate of the succeeding passage started to decrease. These phenomena occurred sequentially, causing the five-cell stalls to rotate. Five stationary low-velocity regions that did not rotate were observed before the initiation of the five-cell rotating stalls. When the outlet mass flowrate decreased, a one-cell rotating stall appeared within the diffuser passage. It provided a low-energy fluid to the diffuser passages where the low-velocity regions existed. Subsequently, five low-velocity regions were clearly formed, which started rotating according to the rotating mechanism explained above.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUnsteady Pre-Stall Behavior in a Centrifugal Compressor With Vaned Diffuser
    typeJournal Paper
    journal volume146
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4064136
    journal fristpage41006-1
    journal lastpage41006-10
    page10
    treeJournal of Turbomachinery:;2023:;volume( 146 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian