YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Direct Numerical Simulation of Transitional and Turbulent Flows Over Multi-Scale Surface Roughness—Part I: Methodology and Challenges

    Source: Journal of Turbomachinery:;2023:;volume( 146 ):;issue: 003::page 31008-1
    Author:
    Nardini, Massimiliano
    ,
    Kozul, Melissa
    ,
    Jelly, Thomas O.
    ,
    Sandberg, Richard D.
    DOI: 10.1115/1.4063753
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: High-fidelity simulation of transitional and turbulent flows over multi-scale surface roughness presents several challenges. For instance, the complex and irregular geometrical nature of surface roughness makes it impractical to employ conforming structured grids, commonly adopted in large-scale numerical simulations due to their high computational efficiency. One possible solution to overcome this problem is offered by immersed boundary methods, which allow wall boundary conditions to be enforced on grids that do not conform to the geometry of the solid boundary. To this end, a three-dimensional, second-order accurate boundary data immersion method (BDIM) is adopted. A novel mapping algorithm that can be applied to general three-dimensional surfaces is presented, together with a newly developed data-capturing methodology to extract and analyze on-surface flow quantities of interest. A rigorous procedure to compute gradient quantities such as the wall shear stress and the heat flux on complex non-conforming geometries is also introduced. The new framework is validated by performing a direct numerical simulation (DNS) of fully developed turbulent channel flow over sinusoidal egg-carton roughness in a minimal-span domain. For this canonical case, the averaged streamwise velocity profiles are compared against results from the literature obtained with a body-fitted grid. General guidelines on the BDIM resolution requirements for multi-scale roughness simulation are given. Momentum and energy balance methods are used to validate the calculation of the overall skin friction and heat transfer at the wall. The BDIM is then employed to investigate the effect of irregular homogeneous surface roughness on the performance of an LS-89 high-pressure turbine blade at engine-relevant conditions using DNS. This is the first application of the BDIM to realize multi-scale roughness for transitional flow in transonic conditions in the context of high-pressure turbines. The methodology adopted to generate the desired roughness distribution and to apply it to the reference blade geometry is introduced. The results are compared to the case of an equivalent smooth blade.
    • Download: (1.149Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Direct Numerical Simulation of Transitional and Turbulent Flows Over Multi-Scale Surface Roughness—Part I: Methodology and Challenges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295950
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorNardini, Massimiliano
    contributor authorKozul, Melissa
    contributor authorJelly, Thomas O.
    contributor authorSandberg, Richard D.
    date accessioned2024-04-24T22:49:56Z
    date available2024-04-24T22:49:56Z
    date copyright12/4/2023 12:00:00 AM
    date issued2023
    identifier issn0889-504X
    identifier otherturbo_146_3_031008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295950
    description abstractHigh-fidelity simulation of transitional and turbulent flows over multi-scale surface roughness presents several challenges. For instance, the complex and irregular geometrical nature of surface roughness makes it impractical to employ conforming structured grids, commonly adopted in large-scale numerical simulations due to their high computational efficiency. One possible solution to overcome this problem is offered by immersed boundary methods, which allow wall boundary conditions to be enforced on grids that do not conform to the geometry of the solid boundary. To this end, a three-dimensional, second-order accurate boundary data immersion method (BDIM) is adopted. A novel mapping algorithm that can be applied to general three-dimensional surfaces is presented, together with a newly developed data-capturing methodology to extract and analyze on-surface flow quantities of interest. A rigorous procedure to compute gradient quantities such as the wall shear stress and the heat flux on complex non-conforming geometries is also introduced. The new framework is validated by performing a direct numerical simulation (DNS) of fully developed turbulent channel flow over sinusoidal egg-carton roughness in a minimal-span domain. For this canonical case, the averaged streamwise velocity profiles are compared against results from the literature obtained with a body-fitted grid. General guidelines on the BDIM resolution requirements for multi-scale roughness simulation are given. Momentum and energy balance methods are used to validate the calculation of the overall skin friction and heat transfer at the wall. The BDIM is then employed to investigate the effect of irregular homogeneous surface roughness on the performance of an LS-89 high-pressure turbine blade at engine-relevant conditions using DNS. This is the first application of the BDIM to realize multi-scale roughness for transitional flow in transonic conditions in the context of high-pressure turbines. The methodology adopted to generate the desired roughness distribution and to apply it to the reference blade geometry is introduced. The results are compared to the case of an equivalent smooth blade.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDirect Numerical Simulation of Transitional and Turbulent Flows Over Multi-Scale Surface Roughness—Part I: Methodology and Challenges
    typeJournal Paper
    journal volume146
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4063753
    journal fristpage31008-1
    journal lastpage31008-11
    page11
    treeJournal of Turbomachinery:;2023:;volume( 146 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian