YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessment of the DDES-γ Model for the Simulation of a Highly Loaded Turbine Cascade

    Source: Journal of Turbomachinery:;2023:;volume( 146 ):;issue: 001::page 11011-1
    Author:
    Fard Afshar, Nima
    ,
    Möller, Felix M.
    ,
    Henninger, Stefan
    ,
    Kožulović, Dragan
    ,
    Morsbach, Christian
    ,
    Bechlars, Patrick
    ,
    Jeschke, Peter
    DOI: 10.1115/1.4064079
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The flow over the linear low-pressure turbine cascade MTU-T161 at Re = 90,000 is analyzed using delayed detached eddy simulations (DDES). At this operating point, the low Reynolds number and the high loading of the blade result in a separation bubble and a separation-induced transition of the flow over the suction side. The utilized DDES method is based on a vorticity-based formulation to calculate the subgrid length scales, and it incorporates the one-equation γ-transition model. The computational model of the MTU-T161 cascade consists of one blade passage, including the diverging viscous sidewalls. To reproduce realistic operating conditions and to mimic the experiments, synthetic turbulence is prescribed at the inlet of the computational domain. Several studies are performed to assess the accuracy and performance of the DDES one-equation γ-transition model against experimental data and a benchmark large eddy simulations (LES). The primary focus is on the prediction of the separation and the separation-induced transition mechanism. First of all, a systematic grid convergence study is conducted and grid criteria are derived in order to ensure a satisfactory agreement of the flow metrics, such as isentropic Mach number, friction coefficient distribution, and total pressure wake losses at mid-span with experimental data. Furthermore, a detailed analysis of the DDES model parameters, such as shielding function and subgrid length scale, is presented and the effect of these parameters on the prediction accuracy of the separation bubble region is analyzed. The analysis of the suction side boundary layer indicates that the turbulent kinetic energy should be resolved and modeled properly in order to represent the separation bubble correctly. In particular, the correct prediction of the separated shear layer above the separation bubble is of utmost importance. The results of the simulations reveal higher demands on grid resolution for such transitional flows than typically have been reported in the literature for turbulent boundary layers. This higher demand on grid resolution results in more expensive simulations than Reynolds-averaged Navier–Stokes (RANS). Nevertheless, DDES requires less computing time than wall-resolved LES. Additionally, the results of the transitional DDES model are compared to DDES without a transition model, an RANS eddy viscosity model, and a reference LES. The results show that the DDES approach needs to be coupled with a transition model, such as the one-equation γ-transition model, in order to capture the flow topology over a highly loaded turbine blade correctly. The benefit of the DDES one-equation γ-transition model becomes particularly evident when predicting the separated shear layer, the transition process, and the subsequent reattachment. The RANS eddy viscosity turbulence and transition models applied within our study are not able to predict the aforementioned mechanisms accurately. For highly loaded turbine blades in particular, the accurate prediction of flow separation and potential reattachment is crucial for the aerodynamic design of turbines, since large parts of the total pressure loss are generated in the separated region. For this reason, the DDES one-equation γ-transition model can be a good compromise in terms of predictive accuracy and computational costs.
    • Download: (960.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessment of the DDES-γ Model for the Simulation of a Highly Loaded Turbine Cascade

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295932
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorFard Afshar, Nima
    contributor authorMöller, Felix M.
    contributor authorHenninger, Stefan
    contributor authorKožulović, Dragan
    contributor authorMorsbach, Christian
    contributor authorBechlars, Patrick
    contributor authorJeschke, Peter
    date accessioned2024-04-24T22:49:06Z
    date available2024-04-24T22:49:06Z
    date copyright11/30/2023 12:00:00 AM
    date issued2023
    identifier issn0889-504X
    identifier otherturbo_146_1_011011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295932
    description abstractThe flow over the linear low-pressure turbine cascade MTU-T161 at Re = 90,000 is analyzed using delayed detached eddy simulations (DDES). At this operating point, the low Reynolds number and the high loading of the blade result in a separation bubble and a separation-induced transition of the flow over the suction side. The utilized DDES method is based on a vorticity-based formulation to calculate the subgrid length scales, and it incorporates the one-equation γ-transition model. The computational model of the MTU-T161 cascade consists of one blade passage, including the diverging viscous sidewalls. To reproduce realistic operating conditions and to mimic the experiments, synthetic turbulence is prescribed at the inlet of the computational domain. Several studies are performed to assess the accuracy and performance of the DDES one-equation γ-transition model against experimental data and a benchmark large eddy simulations (LES). The primary focus is on the prediction of the separation and the separation-induced transition mechanism. First of all, a systematic grid convergence study is conducted and grid criteria are derived in order to ensure a satisfactory agreement of the flow metrics, such as isentropic Mach number, friction coefficient distribution, and total pressure wake losses at mid-span with experimental data. Furthermore, a detailed analysis of the DDES model parameters, such as shielding function and subgrid length scale, is presented and the effect of these parameters on the prediction accuracy of the separation bubble region is analyzed. The analysis of the suction side boundary layer indicates that the turbulent kinetic energy should be resolved and modeled properly in order to represent the separation bubble correctly. In particular, the correct prediction of the separated shear layer above the separation bubble is of utmost importance. The results of the simulations reveal higher demands on grid resolution for such transitional flows than typically have been reported in the literature for turbulent boundary layers. This higher demand on grid resolution results in more expensive simulations than Reynolds-averaged Navier–Stokes (RANS). Nevertheless, DDES requires less computing time than wall-resolved LES. Additionally, the results of the transitional DDES model are compared to DDES without a transition model, an RANS eddy viscosity model, and a reference LES. The results show that the DDES approach needs to be coupled with a transition model, such as the one-equation γ-transition model, in order to capture the flow topology over a highly loaded turbine blade correctly. The benefit of the DDES one-equation γ-transition model becomes particularly evident when predicting the separated shear layer, the transition process, and the subsequent reattachment. The RANS eddy viscosity turbulence and transition models applied within our study are not able to predict the aforementioned mechanisms accurately. For highly loaded turbine blades in particular, the accurate prediction of flow separation and potential reattachment is crucial for the aerodynamic design of turbines, since large parts of the total pressure loss are generated in the separated region. For this reason, the DDES one-equation γ-transition model can be a good compromise in terms of predictive accuracy and computational costs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAssessment of the DDES-γ Model for the Simulation of a Highly Loaded Turbine Cascade
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4064079
    journal fristpage11011-1
    journal lastpage11011-10
    page10
    treeJournal of Turbomachinery:;2023:;volume( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian