YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Conjugate Heat Transfer Evaluation of Turbine Blade Leading-Edge Swirl and Jet Impingement Cooling With Particulate Deposition

    Source: Journal of Turbomachinery:;2023:;volume( 146 ):;issue: 001::page 11003-1
    Author:
    Yang, Xing
    ,
    Hao, Zihan
    ,
    Feng, Zhenping
    ,
    Ligrani, Phillip
    ,
    Weigand, Bernhard
    DOI: 10.1115/1.4063676
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Internal cooling structures for gas turbine engines are becoming more complicated to push the hot gas temperature as high as possible, which, however, allows particulates drawn into the coolant air to be more readily to deposit within these passages and thus greatly affect their flow loss and thermal performance. In this study, internal swirl cooling and jet impingement cooling subjected to particulate deposition were evaluated and compared using a conjugate heat transfer method, with an emphasis on the thermal effects of the insulative deposits. To accomplish the goal, an unsteady conjugate mesh morphing simulation framework was developed and validated, which involved particle tracking in an unsteady fluid flow, particle–wall interaction modeling, conjugate mesh morphing of both fluid and solid domains, and a deposit identification method. The swirl and the jet impingement cooling configurations modeled the internal cooling passage for the leading-edge region of a turbine blade and were investigated in a dust-laden coolant environment at real engine conditions. Coupling effects between the dynamic deposition process and the unsteady flow inside the two cooling channels were examined and the insulative effects of the deposits were quantified by comparing the temperatures on the external and internal surfaces of the metal channel walls, as well as on the deposit layers. Results demonstrated the ability of the newly developed, unsteady conjugate simulation framework to identify the deposits from the original bare wall surface and to predict the insulation effects of the deposits in the dynamic deposition process. The dust almost covered the entire impingement channel, while deposits were only seen in the vicinity of the jets in the swirl channel. Despite this, a dramatical decrease of convection heat transfer was found in the swirl channel because the swirling flow was sensitive to the interruption of the deposits. In contrast, the deposits improved the heat transfer rate in the impingement channel. When the thermal effects of the deposit layer were taken into account, the wall temperatures of both two cooling geometries were substantially elevated, exceeding the allowable temperature of the metal material. Due to the denser deposit coverage, the impingement channel wall had a greater temperature increase than the swirl channel. In terms of flow loss, the presence of the deposits inhibited the swirl intensity by interrupting the swirling flow and thus reduced the friction loss, whereas the pressure loss was improved by the deposits in the impingement cooling.
    • Download: (2.578Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Conjugate Heat Transfer Evaluation of Turbine Blade Leading-Edge Swirl and Jet Impingement Cooling With Particulate Deposition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295926
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorYang, Xing
    contributor authorHao, Zihan
    contributor authorFeng, Zhenping
    contributor authorLigrani, Phillip
    contributor authorWeigand, Bernhard
    date accessioned2024-04-24T22:48:50Z
    date available2024-04-24T22:48:50Z
    date copyright10/19/2023 12:00:00 AM
    date issued2023
    identifier issn0889-504X
    identifier otherturbo_146_1_011003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295926
    description abstractInternal cooling structures for gas turbine engines are becoming more complicated to push the hot gas temperature as high as possible, which, however, allows particulates drawn into the coolant air to be more readily to deposit within these passages and thus greatly affect their flow loss and thermal performance. In this study, internal swirl cooling and jet impingement cooling subjected to particulate deposition were evaluated and compared using a conjugate heat transfer method, with an emphasis on the thermal effects of the insulative deposits. To accomplish the goal, an unsteady conjugate mesh morphing simulation framework was developed and validated, which involved particle tracking in an unsteady fluid flow, particle–wall interaction modeling, conjugate mesh morphing of both fluid and solid domains, and a deposit identification method. The swirl and the jet impingement cooling configurations modeled the internal cooling passage for the leading-edge region of a turbine blade and were investigated in a dust-laden coolant environment at real engine conditions. Coupling effects between the dynamic deposition process and the unsteady flow inside the two cooling channels were examined and the insulative effects of the deposits were quantified by comparing the temperatures on the external and internal surfaces of the metal channel walls, as well as on the deposit layers. Results demonstrated the ability of the newly developed, unsteady conjugate simulation framework to identify the deposits from the original bare wall surface and to predict the insulation effects of the deposits in the dynamic deposition process. The dust almost covered the entire impingement channel, while deposits were only seen in the vicinity of the jets in the swirl channel. Despite this, a dramatical decrease of convection heat transfer was found in the swirl channel because the swirling flow was sensitive to the interruption of the deposits. In contrast, the deposits improved the heat transfer rate in the impingement channel. When the thermal effects of the deposit layer were taken into account, the wall temperatures of both two cooling geometries were substantially elevated, exceeding the allowable temperature of the metal material. Due to the denser deposit coverage, the impingement channel wall had a greater temperature increase than the swirl channel. In terms of flow loss, the presence of the deposits inhibited the swirl intensity by interrupting the swirling flow and thus reduced the friction loss, whereas the pressure loss was improved by the deposits in the impingement cooling.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleConjugate Heat Transfer Evaluation of Turbine Blade Leading-Edge Swirl and Jet Impingement Cooling With Particulate Deposition
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4063676
    journal fristpage11003-1
    journal lastpage11003-16
    page16
    treeJournal of Turbomachinery:;2023:;volume( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian