YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Methods for Estimating Hydrogen Fuel Tank Characteristics

    Source: Journal of Pressure Vessel Technology:;2023:;volume( 146 ):;issue: 001::page 11501-1
    Author:
    Klymyshyn, Nicholas A.
    ,
    Brooks, Kriston
    ,
    Barrett, Nathan
    DOI: 10.1115/1.4063884
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The pressure vessels needed to store hydrogen for next-generation hydrogen fuel cell vehicles are expected to be a substantial portion of the total system mass, volume, and cost. Gravimetric capacity, volumetric capacity, and cost per kilogram of usable hydrogen are key performance metrics that the U.S. Department of Energy (DOE) uses to determine the viability of hydrogen fuel cell systems. Research and development related to hydrogen storage systems covers a wide range of potential operating conditions, from cryogenic temperatures to high temperatures (above ambient) and low pressure to high pressure. Researchers at PNNL have developed methods for estimating these key pressure vessel characteristics to support on-board hydrogen storage system design and performance evaluation and to support decision-making about DOE hydrogen storage system research investments. This article describes the pressure tank estimation methodology that has been used as a stand-alone calculation and has been incorporated into larger system evaluation tools. The methodology estimates the geometry, mass, and material cost of type I, type III, and type IV pressure vessels based on operating pressure and material strength at the system's operating temperature, using classical thin-wall and thick-wall pressure vessel stress calculations. The geometry, mass, and material cost requirements of the pressure vessel have significant impacts on the total system performance. For example, hydrogen storage materials that can separately achieve a very high hydrogen density can be deemed impractical for use in fuel cell vehicle hydrogen storage systems because the pressure tank containing them is too large, heavy, or expensive. This article describes the design philosophy and analytical process of the tank characteristic estimation methodology, which has been implemented in spreadsheet calculation tools and system-level analysis tools used by DOE researchers. Each of the three tank types (type I, type III, and type IV) uses a different analysis methodology with some common elements. This article also provides examples of implementing the methodology to perform parametric studies of all three pressure vessel types. The goal of this article is to present the methodology in sufficient detail so it can be implemented in other hydrogen fuel cell vehicle design and analysis tools.
    • Download: (655.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Methods for Estimating Hydrogen Fuel Tank Characteristics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295796
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorKlymyshyn, Nicholas A.
    contributor authorBrooks, Kriston
    contributor authorBarrett, Nathan
    date accessioned2024-04-24T22:44:49Z
    date available2024-04-24T22:44:49Z
    date copyright11/22/2023 12:00:00 AM
    date issued2023
    identifier issn0094-9930
    identifier otherpvt_146_01_011501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295796
    description abstractThe pressure vessels needed to store hydrogen for next-generation hydrogen fuel cell vehicles are expected to be a substantial portion of the total system mass, volume, and cost. Gravimetric capacity, volumetric capacity, and cost per kilogram of usable hydrogen are key performance metrics that the U.S. Department of Energy (DOE) uses to determine the viability of hydrogen fuel cell systems. Research and development related to hydrogen storage systems covers a wide range of potential operating conditions, from cryogenic temperatures to high temperatures (above ambient) and low pressure to high pressure. Researchers at PNNL have developed methods for estimating these key pressure vessel characteristics to support on-board hydrogen storage system design and performance evaluation and to support decision-making about DOE hydrogen storage system research investments. This article describes the pressure tank estimation methodology that has been used as a stand-alone calculation and has been incorporated into larger system evaluation tools. The methodology estimates the geometry, mass, and material cost of type I, type III, and type IV pressure vessels based on operating pressure and material strength at the system's operating temperature, using classical thin-wall and thick-wall pressure vessel stress calculations. The geometry, mass, and material cost requirements of the pressure vessel have significant impacts on the total system performance. For example, hydrogen storage materials that can separately achieve a very high hydrogen density can be deemed impractical for use in fuel cell vehicle hydrogen storage systems because the pressure tank containing them is too large, heavy, or expensive. This article describes the design philosophy and analytical process of the tank characteristic estimation methodology, which has been implemented in spreadsheet calculation tools and system-level analysis tools used by DOE researchers. Each of the three tank types (type I, type III, and type IV) uses a different analysis methodology with some common elements. This article also provides examples of implementing the methodology to perform parametric studies of all three pressure vessel types. The goal of this article is to present the methodology in sufficient detail so it can be implemented in other hydrogen fuel cell vehicle design and analysis tools.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMethods for Estimating Hydrogen Fuel Tank Characteristics
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4063884
    journal fristpage11501-1
    journal lastpage11501-10
    page10
    treeJournal of Pressure Vessel Technology:;2023:;volume( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian