YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Physics-Informed Neural Operator for the Simulation of Surface Waves

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2024:;volume( 146 ):;issue: 006::page 61201-1
    Author:
    Mathias, Marlon S.
    ,
    Netto, Caio F. D.
    ,
    Moreno, Felipe M.
    ,
    Coelho, Jefferson F.
    ,
    de Freitas, Lucas P.
    ,
    de Barros, Marcel R.
    ,
    de Mello, Pedro C.
    ,
    Dottori, Marcelo
    ,
    Cozman, Fábio G.
    ,
    Costa, Anna H. R.
    ,
    Nogueira Junior, Alberto C.
    ,
    Gomi, Edson S.
    ,
    Tannuri, Ed
    DOI: 10.1115/1.4064676
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We develop and implement a neural operator (NOp) to predict the evolution of waves on the surface of water. The NOp uses a graph neural network (GNN) to connect randomly sampled points on the water surface and exchange information between them to make the prediction. Our main contribution is adding physical knowledge to the implementation, which allows the model to be more general and able to be used in domains of different geometries with no retraining. Our implementation also takes advantage of the fact that the governing equations are independent of rotation and translation to make training easier. In this work, the model is trained with data from a single domain with fixed dimensions and evaluated in domains of different dimensions with little impact to performance.
    • Download: (1.178Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Physics-Informed Neural Operator for the Simulation of Surface Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295789
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorMathias, Marlon S.
    contributor authorNetto, Caio F. D.
    contributor authorMoreno, Felipe M.
    contributor authorCoelho, Jefferson F.
    contributor authorde Freitas, Lucas P.
    contributor authorde Barros, Marcel R.
    contributor authorde Mello, Pedro C.
    contributor authorDottori, Marcelo
    contributor authorCozman, Fábio G.
    contributor authorCosta, Anna H. R.
    contributor authorNogueira Junior, Alberto C.
    contributor authorGomi, Edson S.
    contributor authorTannuri, Ed
    date accessioned2024-04-24T22:44:28Z
    date available2024-04-24T22:44:28Z
    date copyright2/26/2024 12:00:00 AM
    date issued2024
    identifier issn0892-7219
    identifier otheromae_146_6_061201.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295789
    description abstractWe develop and implement a neural operator (NOp) to predict the evolution of waves on the surface of water. The NOp uses a graph neural network (GNN) to connect randomly sampled points on the water surface and exchange information between them to make the prediction. Our main contribution is adding physical knowledge to the implementation, which allows the model to be more general and able to be used in domains of different geometries with no retraining. Our implementation also takes advantage of the fact that the governing equations are independent of rotation and translation to make training easier. In this work, the model is trained with data from a single domain with fixed dimensions and evaluated in domains of different dimensions with little impact to performance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Physics-Informed Neural Operator for the Simulation of Surface Waves
    typeJournal Paper
    journal volume146
    journal issue6
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4064676
    journal fristpage61201-1
    journal lastpage61201-10
    page10
    treeJournal of Offshore Mechanics and Arctic Engineering:;2024:;volume( 146 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian