Show simple item record

contributor authorChen, Hao
contributor authorQian, Ling
contributor authorCao, Deping
date accessioned2024-04-24T22:43:48Z
date available2024-04-24T22:43:48Z
date copyright10/5/2023 12:00:00 AM
date issued2023
identifier issn0892-7219
identifier otheromae_146_3_031901.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295770
description abstractThis paper presents a solution verification and validation study for an overset mesh based numerical wave tank in openfoam, which considers the coupling between a free-surface hydrodynamic flow model, a rigid body motion model, and an overset mesh. The coupling between the rigid body motion solver and the free-surface flow solver was achieved in a segregated manner. Free decay of roll motion of a barge was modeled using the numerical wave tank, and the damping coefficient was selected as the target quantity for solution verification. The least-square based solution verification procedure was adopted, where one of the four types of error estimators was fit to the data in the least-square sense. Both structured and unstructured mesh were tested, and their effects on the convergence order, numerical uncertainty, and error were carefully investigated. From the numerical tests, it is found that the numerical wave tank exhibits a very good convergence property for the floating body problems with structured mesh, i.e., nearly second order in space and first order in time. However, when switching the body-fitted mesh to unstructured mesh, the grid convergence is reduced to first order. Unstructured mesh does not significantly affect the convergence order in time domain, but results in a larger uncertainty due to data scattering.
publisherThe American Society of Mechanical Engineers (ASME)
titleAnalysis of Convergence Behavior for the Overset Mesh Based Numerical Wave Tank in openfoam
typeJournal Paper
journal volume146
journal issue3
journal titleJournal of Offshore Mechanics and Arctic Engineering
identifier doi10.1115/1.4063265
journal fristpage31901-1
journal lastpage31901-8
page8
treeJournal of Offshore Mechanics and Arctic Engineering:;2023:;volume( 146 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record