YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Serviceability Limit State Assessment of Semi-Submersible Floating Wind Turbines

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2023:;volume( 146 ):;issue: 002::page 22003-1
    Author:
    Wang, Shuaishuai
    ,
    Moan, Torgeir
    DOI: 10.1115/1.4063618
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The design of a floating wind turbine (FWT) should satisfy the serviceability limit state (SLS) requirement for an efficient and safe operation throughout the entire work life. The SLS requirements are introduced by the owner/developer of the wind turbine facility to achieve serviceability (production of power) or an efficient operation of the facility or a “first step” towards ensuring safety. Currently, there is limited information about SLS requirements in design standards. This study deals with an assessment of current methods, criteria, and procedure for the SLS design check with an emphasis on tilt/pitch and nacelle accelerations in view of power production and its fluctuations. Moreover, other criteria, on the borderline between serviceability and safety criteria, e.g., relating to clearance, are briefly discussed. The criteria relating to power production are illustrated in a case study with a 10-MW semi-submersible FWT considered for an offshore site in the Northern North Sea. Simplified static/dynamic analysis methods for use in the global design phase and high fidelity integrated, dynamic analysis methods for detailed design in terms of serviceability are presented, discussed, and applied in the case study. A good understanding of wind turbine dynamic performance associated with serviceability is essential to facilitate design decision-making. The relative contribution of wind and wave loads to the different SLS criteria is investigated. Finally, the main conclusions are summarized. In lieu of the current state of the art regarding SLS requirements for FWTs, we hope that this study provides a basis for improving design standards and guiding research and engineering practice for the semi-submersible floater design of FWTs.
    • Download: (1.237Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Serviceability Limit State Assessment of Semi-Submersible Floating Wind Turbines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295761
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorWang, Shuaishuai
    contributor authorMoan, Torgeir
    date accessioned2024-04-24T22:43:36Z
    date available2024-04-24T22:43:36Z
    date copyright12/4/2023 12:00:00 AM
    date issued2023
    identifier issn0892-7219
    identifier otheromae_146_2_022003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295761
    description abstractThe design of a floating wind turbine (FWT) should satisfy the serviceability limit state (SLS) requirement for an efficient and safe operation throughout the entire work life. The SLS requirements are introduced by the owner/developer of the wind turbine facility to achieve serviceability (production of power) or an efficient operation of the facility or a “first step” towards ensuring safety. Currently, there is limited information about SLS requirements in design standards. This study deals with an assessment of current methods, criteria, and procedure for the SLS design check with an emphasis on tilt/pitch and nacelle accelerations in view of power production and its fluctuations. Moreover, other criteria, on the borderline between serviceability and safety criteria, e.g., relating to clearance, are briefly discussed. The criteria relating to power production are illustrated in a case study with a 10-MW semi-submersible FWT considered for an offshore site in the Northern North Sea. Simplified static/dynamic analysis methods for use in the global design phase and high fidelity integrated, dynamic analysis methods for detailed design in terms of serviceability are presented, discussed, and applied in the case study. A good understanding of wind turbine dynamic performance associated with serviceability is essential to facilitate design decision-making. The relative contribution of wind and wave loads to the different SLS criteria is investigated. Finally, the main conclusions are summarized. In lieu of the current state of the art regarding SLS requirements for FWTs, we hope that this study provides a basis for improving design standards and guiding research and engineering practice for the semi-submersible floater design of FWTs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleServiceability Limit State Assessment of Semi-Submersible Floating Wind Turbines
    typeJournal Paper
    journal volume146
    journal issue2
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4063618
    journal fristpage22003-1
    journal lastpage22003-13
    page13
    treeJournal of Offshore Mechanics and Arctic Engineering:;2023:;volume( 146 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian