YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Loading Rate Effect on the Pullout Capacity of OMNI-Max Anchors in Clay Coupled With Multiple Factors

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2023:;volume( 146 ):;issue: 001::page 12101-1
    Author:
    Liu, Haixiao
    ,
    Yang, Yancheng
    ,
    Xu, Heng
    DOI: 10.1115/1.4063332
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: As the latest development of gravity installed anchors (GIAs), the OMNI-Max anchor has drawn much attention from worldwide due to its unique behavior in the seabed. The pullout capacity of OMNI-Max anchors is a key index in engineering. However, most of the relevant studies were carried out under a quasi-static condition, which do not actually meet the installation and operation requirements. In practice, the anchor may be subjected to both long-term and short-term sharp loading during mooring. As an important environmental variable, it is essential to evaluate the effect of loading rate on the pullout capacity. Since the bearing capacity of OMNI-Max anchors is affected by many factors, it is also essential to explore systematically the coupling effects of the loading rate and other factors, including the anchor embedment depth, the anchor orientation, the bearing area, the loading angle, and the soil strength. Based on the coupled Eulerian–Lagrangian (CEL) technique, numerous analytical cases are designed and calculated by the large deformation finite element (LDFE) method. The loading rates span four orders of magnitude from the quasi-static velocity to 10 m/s (about one anchor length per second), covering a wider range in pulling out of GIAs. The end-bearing capacity factor changes remarkably with the pullout velocity for OMNI-Max anchors, and the increase can even reach more than twice of that in a quasi-static condition. As a result, a succinct explicit expression is constructed in terms of the loading rate and multiple factors, which can be effectively utilized to calculate the end-bearing capacity factor of OMNI-Max anchors in clay under complex conditions.
    • Download: (1.775Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Loading Rate Effect on the Pullout Capacity of OMNI-Max Anchors in Clay Coupled With Multiple Factors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295758
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorLiu, Haixiao
    contributor authorYang, Yancheng
    contributor authorXu, Heng
    date accessioned2024-04-24T22:43:29Z
    date available2024-04-24T22:43:29Z
    date copyright10/26/2023 12:00:00 AM
    date issued2023
    identifier issn0892-7219
    identifier otheromae_146_1_012101.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295758
    description abstractAs the latest development of gravity installed anchors (GIAs), the OMNI-Max anchor has drawn much attention from worldwide due to its unique behavior in the seabed. The pullout capacity of OMNI-Max anchors is a key index in engineering. However, most of the relevant studies were carried out under a quasi-static condition, which do not actually meet the installation and operation requirements. In practice, the anchor may be subjected to both long-term and short-term sharp loading during mooring. As an important environmental variable, it is essential to evaluate the effect of loading rate on the pullout capacity. Since the bearing capacity of OMNI-Max anchors is affected by many factors, it is also essential to explore systematically the coupling effects of the loading rate and other factors, including the anchor embedment depth, the anchor orientation, the bearing area, the loading angle, and the soil strength. Based on the coupled Eulerian–Lagrangian (CEL) technique, numerous analytical cases are designed and calculated by the large deformation finite element (LDFE) method. The loading rates span four orders of magnitude from the quasi-static velocity to 10 m/s (about one anchor length per second), covering a wider range in pulling out of GIAs. The end-bearing capacity factor changes remarkably with the pullout velocity for OMNI-Max anchors, and the increase can even reach more than twice of that in a quasi-static condition. As a result, a succinct explicit expression is constructed in terms of the loading rate and multiple factors, which can be effectively utilized to calculate the end-bearing capacity factor of OMNI-Max anchors in clay under complex conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLoading Rate Effect on the Pullout Capacity of OMNI-Max Anchors in Clay Coupled With Multiple Factors
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4063332
    journal fristpage12101-1
    journal lastpage12101-16
    page16
    treeJournal of Offshore Mechanics and Arctic Engineering:;2023:;volume( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian