YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dose Rate Assessment Around the PCFV Release Line During Severe Accident Conditions in Nuclear Power Plant Krsko

    Source: Journal of Nuclear Engineering and Radiation Science:;2023:;volume( 010 ):;issue: 001::page 11701-1
    Author:
    Grgic, Davor
    ,
    Duckic, Paulina
    ,
    Bencik, Vesna
    ,
    Sadek, Sinisa
    DOI: 10.1115/1.4062797
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Passive containment filtered vent (PCFV) was installed in Nuclear Power Plant Krsko (NEK) in 2013 as part of the safety upgrade program. It is intended for severe accident consequences prevention and mitigation by ensuring the containment integrity. When the pressure in the containment reaches limiting value, containment atmosphere is released into the environment through the PCFV system exhaust line. But, before release in the environment, the containment atmosphere passes through five aerosol filters in the containment and one iodine filter in the auxiliary building (AB) to reduce isotopic activity. In this paper, dose rates around the exhaust line of the PCFV system resulting from radioactivity release in case of a severe accident were determined in a four-step methodology. The assumed severe accident scenario is a beyond design basis accident station blackout (SBO) in NEK, which was simulated using the MELCOR code. Its results were input for the radionuclide transport and removal and dose estimation (RADTRAD) radiological calculations to obtain the activities released in the containment. These activities were then transformed into the gamma source intensity and spectrum using the ORIGEN-S libraries. This form of the source term is required for Monte Carlo calculations which were performed using the MCNP6.2. Two Monte Carlo calculations were performed. One for which the radiation source was modeled to emanate from the containment atmosphere and the other from the PCFV duct fluid. The main reason for the calculation was to assess limiting dose rates around PCFV duct (radiation monitor location) during actuation after severe accident. That is why the model is simple and conservative. The other task was to demonstrate that this location is not suitable for longer personnel presence in case of equipment failure during the PCFV actuation. Due to conservative assumptions, predicted dose rates are the highest expected at that location for any severe accident scenario.
    • Download: (6.573Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dose Rate Assessment Around the PCFV Release Line During Severe Accident Conditions in Nuclear Power Plant Krsko

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295733
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorGrgic, Davor
    contributor authorDuckic, Paulina
    contributor authorBencik, Vesna
    contributor authorSadek, Sinisa
    date accessioned2024-04-24T22:42:45Z
    date available2024-04-24T22:42:45Z
    date copyright10/20/2023 12:00:00 AM
    date issued2023
    identifier issn2332-8983
    identifier otherners_010_01_011701.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295733
    description abstractPassive containment filtered vent (PCFV) was installed in Nuclear Power Plant Krsko (NEK) in 2013 as part of the safety upgrade program. It is intended for severe accident consequences prevention and mitigation by ensuring the containment integrity. When the pressure in the containment reaches limiting value, containment atmosphere is released into the environment through the PCFV system exhaust line. But, before release in the environment, the containment atmosphere passes through five aerosol filters in the containment and one iodine filter in the auxiliary building (AB) to reduce isotopic activity. In this paper, dose rates around the exhaust line of the PCFV system resulting from radioactivity release in case of a severe accident were determined in a four-step methodology. The assumed severe accident scenario is a beyond design basis accident station blackout (SBO) in NEK, which was simulated using the MELCOR code. Its results were input for the radionuclide transport and removal and dose estimation (RADTRAD) radiological calculations to obtain the activities released in the containment. These activities were then transformed into the gamma source intensity and spectrum using the ORIGEN-S libraries. This form of the source term is required for Monte Carlo calculations which were performed using the MCNP6.2. Two Monte Carlo calculations were performed. One for which the radiation source was modeled to emanate from the containment atmosphere and the other from the PCFV duct fluid. The main reason for the calculation was to assess limiting dose rates around PCFV duct (radiation monitor location) during actuation after severe accident. That is why the model is simple and conservative. The other task was to demonstrate that this location is not suitable for longer personnel presence in case of equipment failure during the PCFV actuation. Due to conservative assumptions, predicted dose rates are the highest expected at that location for any severe accident scenario.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDose Rate Assessment Around the PCFV Release Line During Severe Accident Conditions in Nuclear Power Plant Krsko
    typeJournal Paper
    journal volume10
    journal issue1
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4062797
    journal fristpage11701-1
    journal lastpage11701-14
    page14
    treeJournal of Nuclear Engineering and Radiation Science:;2023:;volume( 010 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian