YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of Phonation Onset Pressure to Vocal Fold Stiffness Distribution

    Source: Journal of Biomechanical Engineering:;2024:;volume( 146 ):;issue: 008::page 81003-1
    Author:
    Deng, Jonathan J.
    ,
    Peterson, Sean D.
    DOI: 10.1115/1.4064718
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Phonation onset is characterized by the unstable growth of vocal fold (VF) vibrations that ultimately results in self-sustained oscillation and the production of modal voice. Motivated by histological studies, much research has focused on the role of the layered structure of the vocal folds in influencing phonation onset, wherein the outer “cover” layer is relatively soft and the inner “body” layer is relatively stiff. Recent research, however, suggests that the body-cover (BC) structure over-simplifies actual stiffness distributions by neglecting important spatial variations, such as inferior–superior (IS) and anterior–posterior gradients and smooth transitions in stiffness from one histological layer to another. Herein, we explore sensitivity of phonation onset to stiffness gradients and smoothness. By assuming no a priori stiffness distribution and considering a second-order Taylor series sensitivity analysis of phonation onset pressure with respect to stiffness, we find two general smooth stiffness distributions most strongly influence onset pressure: a smooth stiffness containing aspects of BC differences and IS gradients in the cover, which plays a role in minimizing onset pressure, and uniform increases in stiffness, which raise onset pressure and frequency. While the smooth stiffness change contains aspects qualitatively similar to layered BC distributions used in computational studies, smooth transitions in stiffness result in higher sensitivity of onset pressure than discrete layering. These two general stiffness distributions also provide a simple, low-dimensional, interpretation of how complex variations in VF stiffness affect onset pressure, enabling refined exploration of the effects of stiffness distributions on phonation onset.
    • Download: (2.568Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of Phonation Onset Pressure to Vocal Fold Stiffness Distribution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295730
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorDeng, Jonathan J.
    contributor authorPeterson, Sean D.
    date accessioned2024-04-24T22:42:37Z
    date available2024-04-24T22:42:37Z
    date copyright3/21/2024 12:00:00 AM
    date issued2024
    identifier issn0148-0731
    identifier otherbio_146_08_081003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295730
    description abstractPhonation onset is characterized by the unstable growth of vocal fold (VF) vibrations that ultimately results in self-sustained oscillation and the production of modal voice. Motivated by histological studies, much research has focused on the role of the layered structure of the vocal folds in influencing phonation onset, wherein the outer “cover” layer is relatively soft and the inner “body” layer is relatively stiff. Recent research, however, suggests that the body-cover (BC) structure over-simplifies actual stiffness distributions by neglecting important spatial variations, such as inferior–superior (IS) and anterior–posterior gradients and smooth transitions in stiffness from one histological layer to another. Herein, we explore sensitivity of phonation onset to stiffness gradients and smoothness. By assuming no a priori stiffness distribution and considering a second-order Taylor series sensitivity analysis of phonation onset pressure with respect to stiffness, we find two general smooth stiffness distributions most strongly influence onset pressure: a smooth stiffness containing aspects of BC differences and IS gradients in the cover, which plays a role in minimizing onset pressure, and uniform increases in stiffness, which raise onset pressure and frequency. While the smooth stiffness change contains aspects qualitatively similar to layered BC distributions used in computational studies, smooth transitions in stiffness result in higher sensitivity of onset pressure than discrete layering. These two general stiffness distributions also provide a simple, low-dimensional, interpretation of how complex variations in VF stiffness affect onset pressure, enabling refined exploration of the effects of stiffness distributions on phonation onset.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSensitivity of Phonation Onset Pressure to Vocal Fold Stiffness Distribution
    typeJournal Paper
    journal volume146
    journal issue8
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4064718
    journal fristpage81003-1
    journal lastpage81003-13
    page13
    treeJournal of Biomechanical Engineering:;2024:;volume( 146 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian