YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Towards Sustainable Integration: Techno-Economic Analysis and Future Perspectives of Co-Located Wind and Hydrogen Energy Systems

    Source: Journal of Mechanical Design:;2023:;volume( 146 ):;issue: 002::page 20903-1
    Author:
    Li, Honglin
    ,
    Zhang, Jie
    DOI: 10.1115/1.4063971
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This article presents a comprehensive study that focuses on the techno-economic analysis of co-located wind and hydrogen energy integration within an integrated energy system (IES). The research investigates four distinct cases, each exploring various configurations of wind farms, electrolyzers, batteries, hydrogen storage tanks, and fuel cells. To obtain optimal results, the study employs a sophisticated mathematical optimization model formulated as a mixed-integer linear program. This model helps determine the most suitable component sizes and hourly energy scheduling patterns. The research utilizes historical meteorological data and wholesale market prices from diverse regions as inputs, enhancing the study’s applicability and relevance across different geographical locations. Moreover, sensitivity analyses are conducted to assess the impact of hydrogen prices, regional wind profiles, and potential future fluctuations in component prices. These analyses provide valuable insights into the robustness and flexibility of the proposed IES configurations under varying market conditions and uncertainties. The findings reveal cost-effective system configurations, strategic component selections, and implications of future energy scenarios. Specifically comparing to configurations that only have wind and battery combinations, we find that incorporating an electrolyzer results in a 7% reduction in the total cost of the IES, and utilizing hydrogen as the storage medium for fuel cells leads to a 26% cost reduction. Additionally, the IES with hybrid hydrogen and battery energy storage achieves even higher and stable power output. This research facilitates decision-making, risk mitigation, and optimized investment strategies, fostering sustainable planning for a resilient and environmentally friendly energy future.
    • Download: (1.490Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Towards Sustainable Integration: Techno-Economic Analysis and Future Perspectives of Co-Located Wind and Hydrogen Energy Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295656
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorLi, Honglin
    contributor authorZhang, Jie
    date accessioned2024-04-24T22:40:22Z
    date available2024-04-24T22:40:22Z
    date copyright12/18/2023 12:00:00 AM
    date issued2023
    identifier issn1050-0472
    identifier othermd_146_2_020903.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295656
    description abstractThis article presents a comprehensive study that focuses on the techno-economic analysis of co-located wind and hydrogen energy integration within an integrated energy system (IES). The research investigates four distinct cases, each exploring various configurations of wind farms, electrolyzers, batteries, hydrogen storage tanks, and fuel cells. To obtain optimal results, the study employs a sophisticated mathematical optimization model formulated as a mixed-integer linear program. This model helps determine the most suitable component sizes and hourly energy scheduling patterns. The research utilizes historical meteorological data and wholesale market prices from diverse regions as inputs, enhancing the study’s applicability and relevance across different geographical locations. Moreover, sensitivity analyses are conducted to assess the impact of hydrogen prices, regional wind profiles, and potential future fluctuations in component prices. These analyses provide valuable insights into the robustness and flexibility of the proposed IES configurations under varying market conditions and uncertainties. The findings reveal cost-effective system configurations, strategic component selections, and implications of future energy scenarios. Specifically comparing to configurations that only have wind and battery combinations, we find that incorporating an electrolyzer results in a 7% reduction in the total cost of the IES, and utilizing hydrogen as the storage medium for fuel cells leads to a 26% cost reduction. Additionally, the IES with hybrid hydrogen and battery energy storage achieves even higher and stable power output. This research facilitates decision-making, risk mitigation, and optimized investment strategies, fostering sustainable planning for a resilient and environmentally friendly energy future.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTowards Sustainable Integration: Techno-Economic Analysis and Future Perspectives of Co-Located Wind and Hydrogen Energy Systems
    typeJournal Paper
    journal volume146
    journal issue2
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4063971
    journal fristpage20903-1
    journal lastpage20903-15
    page15
    treeJournal of Mechanical Design:;2023:;volume( 146 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian