YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessing the Manufacturability of Students’ Early-Stage Designs Based on Previous Experience With Traditional Manufacturing and Additive Manufacturing

    Source: Journal of Mechanical Design:;2023:;volume( 146 ):;issue: 001::page 12301-1
    Author:
    Pearl, Seth
    ,
    Meisel, Nicholas A.
    DOI: 10.1115/1.4063564
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: As additive manufacturing (AM) usage increases, designers who wish to maximize AM’s potential must reconsider the traditional manufacturing (TM) axioms they may be more familiar with. While research has previously investigated the potential influences that can affect the designs produced in concept generation, little research has been done explicitly targeting the manufacturability of early-stage concepts and how previous experience and the presenting of priming content in manufacturing affect these concepts. The research in this paper addresses this gap in knowledge, specifically targeting differences in concept generation due to designer experience and presenting design for traditional manufacturing (DFTM) and design for additive manufacturing (DFAM) axioms. To understand how designers approach design creation early in the design process and investigate potential influential factors, participants in this study were asked to complete a design challenge centered on concept generation. Before this design challenge, a randomized subset of these participants received priming content on DFTM and DFAM considerations. These participants’ final designs were evaluated for both traditional manufacturability and additive manufacturability and compared against the final designs produced by participants who did not receive the priming content. Results show that students with low manufacturing experience levels create designs that are more naturally suited for TM. Additionally, as designers’ manufacturing experience levels increase, there is an increase in the number of designs more naturally suited for AM. This correlates with a higher self-reported use of DFAM axioms in the evaluation of these designs. These results suggest that students with high manufacturing experience levels rely on their previous experience when it comes to creating a design for either manufacturing process. Lastly, while the manufacturing priming content significantly influenced the traditional manufacturability of the designs, the priming content did not increase the number of self-reported design for manufacturing (DFM) axioms in the designs.
    • Download: (874.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessing the Manufacturability of Students’ Early-Stage Designs Based on Previous Experience With Traditional Manufacturing and Additive Manufacturing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295650
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorPearl, Seth
    contributor authorMeisel, Nicholas A.
    date accessioned2024-04-24T22:40:10Z
    date available2024-04-24T22:40:10Z
    date copyright10/20/2023 12:00:00 AM
    date issued2023
    identifier issn1050-0472
    identifier othermd_146_1_012301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295650
    description abstractAs additive manufacturing (AM) usage increases, designers who wish to maximize AM’s potential must reconsider the traditional manufacturing (TM) axioms they may be more familiar with. While research has previously investigated the potential influences that can affect the designs produced in concept generation, little research has been done explicitly targeting the manufacturability of early-stage concepts and how previous experience and the presenting of priming content in manufacturing affect these concepts. The research in this paper addresses this gap in knowledge, specifically targeting differences in concept generation due to designer experience and presenting design for traditional manufacturing (DFTM) and design for additive manufacturing (DFAM) axioms. To understand how designers approach design creation early in the design process and investigate potential influential factors, participants in this study were asked to complete a design challenge centered on concept generation. Before this design challenge, a randomized subset of these participants received priming content on DFTM and DFAM considerations. These participants’ final designs were evaluated for both traditional manufacturability and additive manufacturability and compared against the final designs produced by participants who did not receive the priming content. Results show that students with low manufacturing experience levels create designs that are more naturally suited for TM. Additionally, as designers’ manufacturing experience levels increase, there is an increase in the number of designs more naturally suited for AM. This correlates with a higher self-reported use of DFAM axioms in the evaluation of these designs. These results suggest that students with high manufacturing experience levels rely on their previous experience when it comes to creating a design for either manufacturing process. Lastly, while the manufacturing priming content significantly influenced the traditional manufacturability of the designs, the priming content did not increase the number of self-reported design for manufacturing (DFM) axioms in the designs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAssessing the Manufacturability of Students’ Early-Stage Designs Based on Previous Experience With Traditional Manufacturing and Additive Manufacturing
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4063564
    journal fristpage12301-1
    journal lastpage12301-14
    page14
    treeJournal of Mechanical Design:;2023:;volume( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian