YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improving Uniformity of Cell Distribution in Post-Inkjet-Based Bioprinting

    Source: Journal of Manufacturing Science and Engineering:;2023:;volume( 146 ):;issue: 001::page 14501-1
    Author:
    Liu, Jiachen
    ,
    Xu, Changxue
    DOI: 10.1115/1.4063134
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Advancements in additive manufacturing enable the fabrication of in vitro biomimetic grafts leveraging biological materials and cells for various biomedical applications. The realization of such biofabrication typically requires time from minutes to hours depending on the scale and complexity of the models. During direct biofabrication, cell sedimentation with the resultant aggregation is extensively deemed to be one of the acute problems for precise and reliable inkjet-based bioprinting. It often results in highly unstable droplet formation, nozzle clogging, and non-uniformity of post-printing cell distribution. Our previous study has implemented active bioink circulation to mitigate cell sedimentation and aggregation within the bioink reservoir. This study focuses on the comparison of post-printing cell distribution within formed microspheres and one-layer sheets with and without active circulation. The experimental results have demonstrated a significant improvement in post-printing cell distribution under implemented active circulation. Moreover, the printed sheet samples are subject to three-day incubation to investigate the effect of cell distribution on cell viability and proliferation. It shows that compared to non-uniform cell distribution, the uniform cell distribution significantly improves cell viability (92% versus 77% at Day 3) and cell proliferation (3.3 times versus 1.7 times at Day 3). The preliminary results in this paper have demonstrated not only the high effectiveness of the active bioink circulation to improve post-printing cell distribution within microspheres and one-layer sheets, but also the critical role of the uniform post-printing cell distribution in promoting cell viability and proliferation.
    • Download: (1.018Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improving Uniformity of Cell Distribution in Post-Inkjet-Based Bioprinting

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295603
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorLiu, Jiachen
    contributor authorXu, Changxue
    date accessioned2024-04-24T22:38:46Z
    date available2024-04-24T22:38:46Z
    date copyright8/28/2023 12:00:00 AM
    date issued2023
    identifier issn1087-1357
    identifier othermanu_146_1_014501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295603
    description abstractAdvancements in additive manufacturing enable the fabrication of in vitro biomimetic grafts leveraging biological materials and cells for various biomedical applications. The realization of such biofabrication typically requires time from minutes to hours depending on the scale and complexity of the models. During direct biofabrication, cell sedimentation with the resultant aggregation is extensively deemed to be one of the acute problems for precise and reliable inkjet-based bioprinting. It often results in highly unstable droplet formation, nozzle clogging, and non-uniformity of post-printing cell distribution. Our previous study has implemented active bioink circulation to mitigate cell sedimentation and aggregation within the bioink reservoir. This study focuses on the comparison of post-printing cell distribution within formed microspheres and one-layer sheets with and without active circulation. The experimental results have demonstrated a significant improvement in post-printing cell distribution under implemented active circulation. Moreover, the printed sheet samples are subject to three-day incubation to investigate the effect of cell distribution on cell viability and proliferation. It shows that compared to non-uniform cell distribution, the uniform cell distribution significantly improves cell viability (92% versus 77% at Day 3) and cell proliferation (3.3 times versus 1.7 times at Day 3). The preliminary results in this paper have demonstrated not only the high effectiveness of the active bioink circulation to improve post-printing cell distribution within microspheres and one-layer sheets, but also the critical role of the uniform post-printing cell distribution in promoting cell viability and proliferation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImproving Uniformity of Cell Distribution in Post-Inkjet-Based Bioprinting
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4063134
    journal fristpage14501-1
    journal lastpage14501-8
    page8
    treeJournal of Manufacturing Science and Engineering:;2023:;volume( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian