YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance Analysis of Waste Biomass Gasification and Renewable Hydrogen Production by Neural Network Algorithm

    Source: Journal of Energy Resources Technology:;2024:;volume( 146 ):;issue: 005::page 52701-1
    Author:
    Vargas, Gabriel Gomes
    ,
    Ortiz, Pablo Silva
    ,
    de Oliveira, Silvio, Jr.
    DOI: 10.1115/1.4064849
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study assesses renewable hydrogen production via gasification of residual biomass, using artificial neural networks (ANNs) for predictive modeling. The process uses residues from sugarcane and orange harvests, sewage sludge, corn byproducts, coffee remnants, eucalyptus remains, and urban waste. Simulation data from aspen plus® software predict hydrogen conversion from each biomass type, with a three-layer feedforward neural network algorithm used for model construction. The model showed high accuracy, with R2 values exceeding 0.9941 and 0.9931 in training and testing datasets, respectively. Performance metrics revealed a maximum higher heating value (HHV) of 18.1 MJ/kg for sewage sludge, the highest cold gas efficiency for urban and orange waste (82.2% and 80.6%), and the highest carbon conversion efficiency for sugarcane bagasse and orange residue (92.8% and 91.2%). Corn waste and sewage sludge yielded the highest hydrogen mole fractions (0.55 and 0.52). The system can reach relative exergy efficiencies from 24.4% for sugarcane straw residues to 42.6% for sugarcane bagasse. Rational exergy efficiencies reached from 23.7% (coffee waste) to 39.0% (sugarcane bagasse). This research highlights the potential of ANNs in forecasting hydrogen conversion and assessing the performance of gasification-based renewable hydrogen procedures using biomass wastes.
    • Download: (1.249Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance Analysis of Waste Biomass Gasification and Renewable Hydrogen Production by Neural Network Algorithm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295498
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorVargas, Gabriel Gomes
    contributor authorOrtiz, Pablo Silva
    contributor authorde Oliveira, Silvio, Jr.
    date accessioned2024-04-24T22:35:22Z
    date available2024-04-24T22:35:22Z
    date copyright3/22/2024 12:00:00 AM
    date issued2024
    identifier issn0195-0738
    identifier otherjert_146_5_052701.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295498
    description abstractThis study assesses renewable hydrogen production via gasification of residual biomass, using artificial neural networks (ANNs) for predictive modeling. The process uses residues from sugarcane and orange harvests, sewage sludge, corn byproducts, coffee remnants, eucalyptus remains, and urban waste. Simulation data from aspen plus® software predict hydrogen conversion from each biomass type, with a three-layer feedforward neural network algorithm used for model construction. The model showed high accuracy, with R2 values exceeding 0.9941 and 0.9931 in training and testing datasets, respectively. Performance metrics revealed a maximum higher heating value (HHV) of 18.1 MJ/kg for sewage sludge, the highest cold gas efficiency for urban and orange waste (82.2% and 80.6%), and the highest carbon conversion efficiency for sugarcane bagasse and orange residue (92.8% and 91.2%). Corn waste and sewage sludge yielded the highest hydrogen mole fractions (0.55 and 0.52). The system can reach relative exergy efficiencies from 24.4% for sugarcane straw residues to 42.6% for sugarcane bagasse. Rational exergy efficiencies reached from 23.7% (coffee waste) to 39.0% (sugarcane bagasse). This research highlights the potential of ANNs in forecasting hydrogen conversion and assessing the performance of gasification-based renewable hydrogen procedures using biomass wastes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePerformance Analysis of Waste Biomass Gasification and Renewable Hydrogen Production by Neural Network Algorithm
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4064849
    journal fristpage52701-1
    journal lastpage52701-12
    page12
    treeJournal of Energy Resources Technology:;2024:;volume( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian