YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Small Female Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts

    Source: Journal of Biomechanical Engineering:;2024:;volume( 146 ):;issue: 003::page 31002-1
    Author:
    Somasundaram, Karthik
    ,
    Hauschild, Hans
    ,
    Driesslein, Klaus
    ,
    Pintar, Frank A.
    DOI: 10.1115/1.4062708
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The objective of this study was to compare the kinematics of the head-neck, torso, pelvis, and lower extremities and document injuries and their patterns to small female occupants in frontal impacts with upright and reclined postures using an experimental model. Six postmortem human surrogates (PMHS) with a mean stature of 154 ± 9.0 cm and mass of 49 ± 12 kg were equally divided between upright and reclined groups (seatback: 25 deg and 45 deg), restrained by a three-point integrated belt, positioned on a semirigid seat, and exposed to low and moderate crash velocities (15 km/h and 32 km/h respectively). The response between the upright and reclined postures was similar in magnitude and curve morphology. While none of the differences were statistically significant, the thoracic spine demonstrated increased downward (+Z) displacement, and the head demonstrated an increased horizontal (+X) displacement for the reclined occupants. In contrast, the upright occupants showed a slightly increased downward (+Z) displacement at the head, but the torso displaced primarily along the +X direction. The posture angles between the two groups were similar at the pelvis and different at the thorax and head. At 32 km/h, both cohorts exhibited multiple rib failure, with upright specimens having a greater number of severe fractures. Although MAIS was the same in both groups, the upright specimens had more bi-cortical rib fractures, suggesting the potential for pneumothorax. This preliminary study may be useful in validating physical (ATDs) and computational (HBMs) surrogates.
    • Download: (3.289Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Small Female Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295298
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorSomasundaram, Karthik
    contributor authorHauschild, Hans
    contributor authorDriesslein, Klaus
    contributor authorPintar, Frank A.
    date accessioned2024-04-24T22:28:49Z
    date available2024-04-24T22:28:49Z
    date copyright1/29/2024 12:00:00 AM
    date issued2024
    identifier issn0148-0731
    identifier otherbio_146_03_031002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295298
    description abstractThe objective of this study was to compare the kinematics of the head-neck, torso, pelvis, and lower extremities and document injuries and their patterns to small female occupants in frontal impacts with upright and reclined postures using an experimental model. Six postmortem human surrogates (PMHS) with a mean stature of 154 ± 9.0 cm and mass of 49 ± 12 kg were equally divided between upright and reclined groups (seatback: 25 deg and 45 deg), restrained by a three-point integrated belt, positioned on a semirigid seat, and exposed to low and moderate crash velocities (15 km/h and 32 km/h respectively). The response between the upright and reclined postures was similar in magnitude and curve morphology. While none of the differences were statistically significant, the thoracic spine demonstrated increased downward (+Z) displacement, and the head demonstrated an increased horizontal (+X) displacement for the reclined occupants. In contrast, the upright occupants showed a slightly increased downward (+Z) displacement at the head, but the torso displaced primarily along the +X direction. The posture angles between the two groups were similar at the pelvis and different at the thorax and head. At 32 km/h, both cohorts exhibited multiple rib failure, with upright specimens having a greater number of severe fractures. Although MAIS was the same in both groups, the upright specimens had more bi-cortical rib fractures, suggesting the potential for pneumothorax. This preliminary study may be useful in validating physical (ATDs) and computational (HBMs) surrogates.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSmall Female Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts
    typeJournal Paper
    journal volume146
    journal issue3
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4062708
    journal fristpage31002-1
    journal lastpage31002-14
    page14
    treeJournal of Biomechanical Engineering:;2024:;volume( 146 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian