YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Theoretical Study on Falling Film Fin-Tube Dehumidifier Integrated With an Evaporative Cooler

    Source: ASME Journal of Heat and Mass Transfer:;2024:;volume( 146 ):;issue: 004::page 41001-1
    Author:
    Kalpana
    ,
    Subudhi, Sudhakar
    DOI: 10.1115/1.4064329
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The current work presents the theoretical analysis of a falling film fin-tube dehumidifier integrated with an evaporative cooler using CaCl2 as a liquid desiccant. In a fin-tube dehumidifier, the fins are provided outside the tubes to sustain the solution temperature during dehumidification. The evaporative cooler is compiled with a dehumidifier to provide cool air over the fins for maintaining the solution and air temperature. The theoretical model examines the heat and mass transfer between the air and the solution, which are moving in a counterflow direction inside the tubes. The study first presents the validation of the theoretical model with the experimental findings. The maximum disparity between theoretical and experimental results for moisture reduction with solution volume flowrate is found to be ±6.2%, whereas it is discovered to be ±13.8% for moisture reduction with airflow rate. The paper then discusses the air and solution parameters variation along the tube height and the impact of air and solution inlet parameters on system performance. The findings indicate that the variation in outlet air humidity ratio with tube height from 0 to 1 m is observed highest, 0.0264 kg/kg d. a. to 0.0233 kg/kg d. a., for a solution volume flowrate of 12.5 LPM and an airflow rate of 0.05 kg/s. The maximum variation in moisture effectiveness with tube height is observed from 0.0045 to 0.292 at 5 LPM solution volume flowrate and 0.05 kg/s airflow rate.
    • Download: (2.176Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Theoretical Study on Falling Film Fin-Tube Dehumidifier Integrated With an Evaporative Cooler

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295292
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorKalpana
    contributor authorSubudhi, Sudhakar
    date accessioned2024-04-24T22:28:43Z
    date available2024-04-24T22:28:43Z
    date copyright1/12/2024 12:00:00 AM
    date issued2024
    identifier issn2832-8450
    identifier otherht_146_04_041001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295292
    description abstractThe current work presents the theoretical analysis of a falling film fin-tube dehumidifier integrated with an evaporative cooler using CaCl2 as a liquid desiccant. In a fin-tube dehumidifier, the fins are provided outside the tubes to sustain the solution temperature during dehumidification. The evaporative cooler is compiled with a dehumidifier to provide cool air over the fins for maintaining the solution and air temperature. The theoretical model examines the heat and mass transfer between the air and the solution, which are moving in a counterflow direction inside the tubes. The study first presents the validation of the theoretical model with the experimental findings. The maximum disparity between theoretical and experimental results for moisture reduction with solution volume flowrate is found to be ±6.2%, whereas it is discovered to be ±13.8% for moisture reduction with airflow rate. The paper then discusses the air and solution parameters variation along the tube height and the impact of air and solution inlet parameters on system performance. The findings indicate that the variation in outlet air humidity ratio with tube height from 0 to 1 m is observed highest, 0.0264 kg/kg d. a. to 0.0233 kg/kg d. a., for a solution volume flowrate of 12.5 LPM and an airflow rate of 0.05 kg/s. The maximum variation in moisture effectiveness with tube height is observed from 0.0045 to 0.292 at 5 LPM solution volume flowrate and 0.05 kg/s airflow rate.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTheoretical Study on Falling Film Fin-Tube Dehumidifier Integrated With an Evaporative Cooler
    typeJournal Paper
    journal volume146
    journal issue4
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4064329
    journal fristpage41001-1
    journal lastpage41001-11
    page11
    treeASME Journal of Heat and Mass Transfer:;2024:;volume( 146 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian