YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cryogenic Air Supply Feasibility for a Confined Space: Underground Refuge Alternative Case Study

    Source: ASME Journal of Heat and Mass Transfer:;2023:;volume( 146 ):;issue: 003::page 31201-1
    Author:
    Yan, Lincan
    ,
    Yantek, Dave S.
    ,
    DeGennaro, Cory R.
    ,
    Srednicki, Justin R.
    ,
    Lambie, Brandin
    ,
    Carr, Jacob
    DOI: 10.1115/1.4064062
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A breathable air source is required for a confined space such as an underground refuge alternative (RA) when it is occupied. To minimize the risk of suffocation, federal regulations require that mechanisms be provided and procedures be included so that, within the refuge alternative, the oxygen concentration is maintained at levels between 18.5% and 23% for 96 h. The regulation also requires that, during use of the RA, the concentration of carbon dioxide should not exceed 1%, and the concentration of carbon monoxide should not exceed 25 ppm. The National Institute for Occupational Safety and Health (NIOSH) evaluated the cryogenic air supply's ability to provide breathable air for a refuge alternative. A propane smoker was used to simulate human breathing by burning propane gas which will consume O2 and generate CO2 and H2O. The rate of propane burned at the smoker was controlled to represent the O2 consumption rate for the breathing of a certain number of people. Two 96-h tests were conducted in a sealed shipping container, which was used as a surrogate for a refuge alternative. While burning propane gas to simulate human oxygen consumption, cryogenic air was provided to the shipping container to determine if the cryogenic air supply would keep the O2 level above 18.5% and CO2 level below 1% inside the shipping container as required by the federal regulations pertaining to refuge alternatives. Both of the 96-h tests simulated the breathing of 21 persons. The first test used the oxygen consumption rate (1.32 cu ft of pure oxygen per hour per person) specified in federal regulations, while the second test used the oxygen consumption rate specified by (Bernard et al. 2018, “Estimation of Metabolic Heat Input for Refuge Alternative Thermal Testing and Simulation,” Min. Eng., 70(8), pp. 50–54) (0.67 cu ft of pure oxygen per hour per person). The test data shows that during both 96-h tests, the oxygen level was maintained within a 21–23% range, and the CO2 level was maintained below 1% (0.2–0.45%). The information in this paper could be useful when applying a cryogenic air supply as a breathable air source for an underground refuge alternative or other confined space.
    • Download: (2.038Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cryogenic Air Supply Feasibility for a Confined Space: Underground Refuge Alternative Case Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295287
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorYan, Lincan
    contributor authorYantek, Dave S.
    contributor authorDeGennaro, Cory R.
    contributor authorSrednicki, Justin R.
    contributor authorLambie, Brandin
    contributor authorCarr, Jacob
    date accessioned2024-04-24T22:28:30Z
    date available2024-04-24T22:28:30Z
    date copyright11/30/2023 12:00:00 AM
    date issued2023
    identifier issn2832-8450
    identifier otherht_146_03_031201.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295287
    description abstractA breathable air source is required for a confined space such as an underground refuge alternative (RA) when it is occupied. To minimize the risk of suffocation, federal regulations require that mechanisms be provided and procedures be included so that, within the refuge alternative, the oxygen concentration is maintained at levels between 18.5% and 23% for 96 h. The regulation also requires that, during use of the RA, the concentration of carbon dioxide should not exceed 1%, and the concentration of carbon monoxide should not exceed 25 ppm. The National Institute for Occupational Safety and Health (NIOSH) evaluated the cryogenic air supply's ability to provide breathable air for a refuge alternative. A propane smoker was used to simulate human breathing by burning propane gas which will consume O2 and generate CO2 and H2O. The rate of propane burned at the smoker was controlled to represent the O2 consumption rate for the breathing of a certain number of people. Two 96-h tests were conducted in a sealed shipping container, which was used as a surrogate for a refuge alternative. While burning propane gas to simulate human oxygen consumption, cryogenic air was provided to the shipping container to determine if the cryogenic air supply would keep the O2 level above 18.5% and CO2 level below 1% inside the shipping container as required by the federal regulations pertaining to refuge alternatives. Both of the 96-h tests simulated the breathing of 21 persons. The first test used the oxygen consumption rate (1.32 cu ft of pure oxygen per hour per person) specified in federal regulations, while the second test used the oxygen consumption rate specified by (Bernard et al. 2018, “Estimation of Metabolic Heat Input for Refuge Alternative Thermal Testing and Simulation,” Min. Eng., 70(8), pp. 50–54) (0.67 cu ft of pure oxygen per hour per person). The test data shows that during both 96-h tests, the oxygen level was maintained within a 21–23% range, and the CO2 level was maintained below 1% (0.2–0.45%). The information in this paper could be useful when applying a cryogenic air supply as a breathable air source for an underground refuge alternative or other confined space.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCryogenic Air Supply Feasibility for a Confined Space: Underground Refuge Alternative Case Study
    typeJournal Paper
    journal volume146
    journal issue3
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4064062
    journal fristpage31201-1
    journal lastpage31201-7
    page7
    treeASME Journal of Heat and Mass Transfer:;2023:;volume( 146 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian