YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Temperature Ratio on Overall Cooling Performance: Low-Order-Model-Based Analysis of Experiment Design

    Source: Journal of Turbomachinery:;2023:;volume( 145 ):;issue: 009::page 91006-1
    Author:
    Naidu, Aravin Dass
    ,
    Povey, Thomas
    DOI: 10.1115/1.4062279
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper describes low-order-model-based analysis of the design of an experiment to be used for parametric studies of adiabatic film and overall cooling effectiveness for fully cooled systems (internal and film) under wide ranges of mainstream-to-coolant temperature ratio variation, in the range 0.50 < T0m/T0c < 2.30. The purpose is to improve understanding of—and validation of—the scaling process from typical rig conditions to engine conditions. We are primarily interested in the variation in overall effectiveness when the controlling non-dimensional groups change in a natural co-dependent way with changes in temperature ratio: that is, the practical situation of interest to engine designers. We distinguish this from the situation in which individual non-dimensional groups are varied in isolation: a situation that we believe is essentially impossible to meaningfully approximate in practice, despite a body of literature purporting to do the same. Design and commissioning data from a new high temperature (600 K) test facility is presented, with detailed uncertainty analysis. We show (using a low-order model) that a typical nozzle guide vane which at engine conditions (TR = 2.00) would have overall cooling effectiveness of 0.450, would be expected to have overall effectiveness of 0.418 at typical rig conditions (TR = 1.20). That is, typical scaling from engine-to-rig result is −7.1% and typical scaling from rig-to-engine is +7.7%. This result is important for first order estimation of overall cooling performance at engine conditions.
    • Download: (2.041Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Temperature Ratio on Overall Cooling Performance: Low-Order-Model-Based Analysis of Experiment Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295040
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorNaidu, Aravin Dass
    contributor authorPovey, Thomas
    date accessioned2023-11-29T19:48:19Z
    date available2023-11-29T19:48:19Z
    date copyright6/9/2023 12:00:00 AM
    date issued6/9/2023 12:00:00 AM
    date issued2023-06-09
    identifier issn0889-504X
    identifier otherturbo_145_9_091006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295040
    description abstractThis paper describes low-order-model-based analysis of the design of an experiment to be used for parametric studies of adiabatic film and overall cooling effectiveness for fully cooled systems (internal and film) under wide ranges of mainstream-to-coolant temperature ratio variation, in the range 0.50 < T0m/T0c < 2.30. The purpose is to improve understanding of—and validation of—the scaling process from typical rig conditions to engine conditions. We are primarily interested in the variation in overall effectiveness when the controlling non-dimensional groups change in a natural co-dependent way with changes in temperature ratio: that is, the practical situation of interest to engine designers. We distinguish this from the situation in which individual non-dimensional groups are varied in isolation: a situation that we believe is essentially impossible to meaningfully approximate in practice, despite a body of literature purporting to do the same. Design and commissioning data from a new high temperature (600 K) test facility is presented, with detailed uncertainty analysis. We show (using a low-order model) that a typical nozzle guide vane which at engine conditions (TR = 2.00) would have overall cooling effectiveness of 0.450, would be expected to have overall effectiveness of 0.418 at typical rig conditions (TR = 1.20). That is, typical scaling from engine-to-rig result is −7.1% and typical scaling from rig-to-engine is +7.7%. This result is important for first order estimation of overall cooling performance at engine conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImpact of Temperature Ratio on Overall Cooling Performance: Low-Order-Model-Based Analysis of Experiment Design
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4062279
    journal fristpage91006-1
    journal lastpage91006-18
    page18
    treeJournal of Turbomachinery:;2023:;volume( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian