YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Full Stage Axial Compressor Performance Modeling Incorporating the Effects of Blade Damage Due to Particle Ingestion

    Source: Journal of Turbomachinery:;2023:;volume( 145 ):;issue: 009::page 91001-1
    Author:
    Chirayath, Emanuel
    ,
    Xu, Haosen
    ,
    Yang, Xiang
    ,
    Kunz, Robert
    DOI: 10.1115/1.4062397
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The damage due to particulate matter ingestion by propulsion gas turbine engines can be significant, impacting the operability and performance of plant components. Here, we focus on the axial compressor whose blades become damaged when operated in dusty/sandy environments, resulting in significant performance degradation. In this work, CFD studies are performed to model the effects of airfoil damage on the first-stage rotor blading of a GE T700–401C compressor. We use thermoplastic additive manufacturing to construct representative physical models of three damage morphologies—ballistically bent/curved leading edges, cragged erosion of leading edges, and eroded leading/tailing edges at outer span locations. The resultant damaged plastic geometries, and a baseline undamaged configuration are then optically scanned and incorporated into sublayer resolved full stage, unsteady RANS analyses. Boundary conditions are imposed that conform to damaged compressor operation protocols, and this iterative process for accommodating corrected mass flow and off-design powering is presented. The results for the three damaged and one undamaged configuration are studied in terms of compressible wave field and secondary/tip flows, spanwise performance parameter distributions and efficiency. A method to estimate the effect of rotor damage on engine SFC is presented. The code, modeling, and meshing strategies pursued here are consistent with a validation study carried out for NASA Rotor 37 — these results are briefly included, and provide confidence in the predictions of the T700 geometry studied. The results provide quantitative comparisons of, and insight into, the physical mechanisms associated with damaged compressor performance degradation.
    • Download: (1.796Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Full Stage Axial Compressor Performance Modeling Incorporating the Effects of Blade Damage Due to Particle Ingestion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295035
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorChirayath, Emanuel
    contributor authorXu, Haosen
    contributor authorYang, Xiang
    contributor authorKunz, Robert
    date accessioned2023-11-29T19:47:56Z
    date available2023-11-29T19:47:56Z
    date copyright5/22/2023 12:00:00 AM
    date issued5/22/2023 12:00:00 AM
    date issued2023-05-22
    identifier issn0889-504X
    identifier otherturbo_145_9_091001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295035
    description abstractThe damage due to particulate matter ingestion by propulsion gas turbine engines can be significant, impacting the operability and performance of plant components. Here, we focus on the axial compressor whose blades become damaged when operated in dusty/sandy environments, resulting in significant performance degradation. In this work, CFD studies are performed to model the effects of airfoil damage on the first-stage rotor blading of a GE T700–401C compressor. We use thermoplastic additive manufacturing to construct representative physical models of three damage morphologies—ballistically bent/curved leading edges, cragged erosion of leading edges, and eroded leading/tailing edges at outer span locations. The resultant damaged plastic geometries, and a baseline undamaged configuration are then optically scanned and incorporated into sublayer resolved full stage, unsteady RANS analyses. Boundary conditions are imposed that conform to damaged compressor operation protocols, and this iterative process for accommodating corrected mass flow and off-design powering is presented. The results for the three damaged and one undamaged configuration are studied in terms of compressible wave field and secondary/tip flows, spanwise performance parameter distributions and efficiency. A method to estimate the effect of rotor damage on engine SFC is presented. The code, modeling, and meshing strategies pursued here are consistent with a validation study carried out for NASA Rotor 37 — these results are briefly included, and provide confidence in the predictions of the T700 geometry studied. The results provide quantitative comparisons of, and insight into, the physical mechanisms associated with damaged compressor performance degradation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFull Stage Axial Compressor Performance Modeling Incorporating the Effects of Blade Damage Due to Particle Ingestion
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4062397
    journal fristpage91001-1
    journal lastpage91001-11
    page11
    treeJournal of Turbomachinery:;2023:;volume( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian