YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Excitation of a Separated Flow by a Series of Protuberances Near the Leading Edge of a Model Aerofoil

    Source: Journal of Turbomachinery:;2023:;volume( 145 ):;issue: 011::page 111001-1
    Author:
    Singh, Pradeep
    ,
    Sarkar, S.
    DOI: 10.1115/1.4063048
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This article documents the manifestation of a shear layer under the excitation of a series of hemispherical protuberances near the leading edge of a constant-thickness airfoil. The experiments are performed at a Reynolds number of 1.6 × 105 based on the chord length and inlet velocity, where freestream turbulence is 1.2%. The hotwire and particle image velocimetry data are analyzed to appreciate the flow feature, illustrating the growth of perturbations, vortex dynamics, intermittency, and spectral response. A laminar separation bubble (LSB) appears near the leading edge for a smooth surface, and the shear layer is inviscidly unstable. The evolution of the shear layer significantly changes with a series of protuberances. The breakdown of the shear layer occurs almost immediately, triggering local turbulence resulting in a considerable reduction of the bubble length. However, a separation bubble of varying spanwise lengths is formed in this case. Although the power spectra of velocity fluctuations reveal the selective amplification of frequencies even with protuberances, the immediate augmentation of turbulence followed by faster decay suggests the transient growth of turbulence. The study has documented insight into features of a separation bubble subjected to leading-edge perturbations and might influence future studies on separation control over an airfoil.
    • Download: (1.804Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Excitation of a Separated Flow by a Series of Protuberances Near the Leading Edge of a Model Aerofoil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295016
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorSingh, Pradeep
    contributor authorSarkar, S.
    date accessioned2023-11-29T19:46:03Z
    date available2023-11-29T19:46:03Z
    date copyright8/16/2023 12:00:00 AM
    date issued8/16/2023 12:00:00 AM
    date issued2023-08-16
    identifier issn0889-504X
    identifier otherturbo_145_11_111001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295016
    description abstractThis article documents the manifestation of a shear layer under the excitation of a series of hemispherical protuberances near the leading edge of a constant-thickness airfoil. The experiments are performed at a Reynolds number of 1.6 × 105 based on the chord length and inlet velocity, where freestream turbulence is 1.2%. The hotwire and particle image velocimetry data are analyzed to appreciate the flow feature, illustrating the growth of perturbations, vortex dynamics, intermittency, and spectral response. A laminar separation bubble (LSB) appears near the leading edge for a smooth surface, and the shear layer is inviscidly unstable. The evolution of the shear layer significantly changes with a series of protuberances. The breakdown of the shear layer occurs almost immediately, triggering local turbulence resulting in a considerable reduction of the bubble length. However, a separation bubble of varying spanwise lengths is formed in this case. Although the power spectra of velocity fluctuations reveal the selective amplification of frequencies even with protuberances, the immediate augmentation of turbulence followed by faster decay suggests the transient growth of turbulence. The study has documented insight into features of a separation bubble subjected to leading-edge perturbations and might influence future studies on separation control over an airfoil.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExcitation of a Separated Flow by a Series of Protuberances Near the Leading Edge of a Model Aerofoil
    typeJournal Paper
    journal volume145
    journal issue11
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4063048
    journal fristpage111001-1
    journal lastpage111001-12
    page12
    treeJournal of Turbomachinery:;2023:;volume( 145 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian