YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Ribbed Surfaces on Profile Losses of Low-Pressure Turbine Blades

    Source: Journal of Turbomachinery:;2023:;volume( 145 ):;issue: 010::page 101009-1
    Author:
    Dellacasagrande, M.
    ,
    Lengani, D.
    ,
    Simoni, D.
    ,
    Ubaldi, M.
    ,
    Bertini, F.
    DOI: 10.1115/1.4063049
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this work, streamwise oriented riblets were installed on a flat plate exposed to an adverse pressure gradient typical of low-pressure turbine (LPT) blade and, successively, on the suction side of an LPT cascade operating under unsteady flow. Different riblet dimensions and positions have been tested to quantify their effects on the boundary layer transition and on losses. The flat plate experiments allowed the detailed description of the riblet effects on the coherent structures affecting transition, thus providing a rationale for the identification of the optimal riblet geometry once scaled in wall-units. For riblet heights equal to about 20 wall-units, a maximum loss reduction of 8% was observed. Otherwise, for larger riblet dimensions, earlier transition occurs due to enhanced boundary layer instability and losses increase. Interestingly, the streamwise extension of the ribbed surfaces with respect to the transition region was found to play a minor role compared with the riblet dimension. The riblet configurations providing the highest reduction of viscous losses were then tested in the LPT blade cascade for different Reynolds numbers and with impinging upstream wakes. An overall profile loss reduction comparable to that observed in the flat plate case has been confirmed also in the unsteady operation of the turbine cascade. Low sensitivity of the profile losses to the riblet streamwise extension was also observed in the cascade application. This confirms that positive effects in terms of loss reduction can be obtained even when the exact transition position is not known a priori.
    • Download: (905.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Ribbed Surfaces on Profile Losses of Low-Pressure Turbine Blades

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295013
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorDellacasagrande, M.
    contributor authorLengani, D.
    contributor authorSimoni, D.
    contributor authorUbaldi, M.
    contributor authorBertini, F.
    date accessioned2023-11-29T19:45:53Z
    date available2023-11-29T19:45:53Z
    date copyright8/16/2023 12:00:00 AM
    date issued8/16/2023 12:00:00 AM
    date issued2023-08-16
    identifier issn0889-504X
    identifier otherturbo_145_10_101009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295013
    description abstractIn this work, streamwise oriented riblets were installed on a flat plate exposed to an adverse pressure gradient typical of low-pressure turbine (LPT) blade and, successively, on the suction side of an LPT cascade operating under unsteady flow. Different riblet dimensions and positions have been tested to quantify their effects on the boundary layer transition and on losses. The flat plate experiments allowed the detailed description of the riblet effects on the coherent structures affecting transition, thus providing a rationale for the identification of the optimal riblet geometry once scaled in wall-units. For riblet heights equal to about 20 wall-units, a maximum loss reduction of 8% was observed. Otherwise, for larger riblet dimensions, earlier transition occurs due to enhanced boundary layer instability and losses increase. Interestingly, the streamwise extension of the ribbed surfaces with respect to the transition region was found to play a minor role compared with the riblet dimension. The riblet configurations providing the highest reduction of viscous losses were then tested in the LPT blade cascade for different Reynolds numbers and with impinging upstream wakes. An overall profile loss reduction comparable to that observed in the flat plate case has been confirmed also in the unsteady operation of the turbine cascade. Low sensitivity of the profile losses to the riblet streamwise extension was also observed in the cascade application. This confirms that positive effects in terms of loss reduction can be obtained even when the exact transition position is not known a priori.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Ribbed Surfaces on Profile Losses of Low-Pressure Turbine Blades
    typeJournal Paper
    journal volume145
    journal issue10
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4063049
    journal fristpage101009-1
    journal lastpage101009-10
    page10
    treeJournal of Turbomachinery:;2023:;volume( 145 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian