Show simple item record

contributor authorZhu, Feiding
contributor authorChen, Jincheng
contributor authorRen, Dengfeng
contributor authorHan, Yuge
date accessioned2023-11-29T19:41:47Z
date available2023-11-29T19:41:47Z
date copyright6/15/2023 12:00:00 AM
date issued6/15/2023 12:00:00 AM
date issued2023-06-15
identifier issn1948-5085
identifier othertsea_15_10_101002.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294961
description abstractSurrogate models of temperature field calculation based on deep learning have gained popularity in recent years because it does not need to establish complex mathematical models. However, the existing models cannot generate the temperature field for different boundary conditions or thermal parameters. In addition, it is also challenging to generate the details of the complex temperature field. In this paper, we propose the Parameters-to-Temperature Generative Adversarial Network (PTGAN) to generate temperature field images with high-quality details for different thermal parameters. The PTGAN model mainly includes the temperature field generation module and the thermal parameter encoding module. Additionally, we use a joint loss function to improve the quality of the generated temperature field image. The temperature field of the armored vehicle is calculated by the computational fluid dynamics method to obtain data set to verify the proposed PTGAN. The results show that the temperature images generated by the PTGAN has high accuracy, and the average relative error is only 0.205%. The attempt to integrate thermal parameters into the temperature field image generation is successful. The temperature field database can be generated quickly and accurately, which is of great significance for the further integration of deep learning and heat transfer.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Deep Learning-Based Surrogate Model for Complex Temperature Field Calculation With Various Thermal Parameters
typeJournal Paper
journal volume15
journal issue10
journal titleJournal of Thermal Science and Engineering Applications
identifier doi10.1115/1.4062680
journal fristpage101002-1
journal lastpage101002-10
page10
treeJournal of Thermal Science and Engineering Applications:;2023:;volume( 015 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record