YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Prediction of Frictional Moment of Cylindrical Roller Bearing Using Experimental Data-Driven Artificial Neural Networks

    Source: Journal of Tribology:;2023:;volume( 145 ):;issue: 009::page 91103-1
    Author:
    Hou, Yu
    ,
    Wang, Xi
    ,
    Xu, Bihe
    ,
    Geng, Yangliao
    ,
    Li, Qingyong
    ,
    Yang, Di
    DOI: 10.1115/1.4062367
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Accurate prediction of the frictional moment of the bearing contributes to the correct determination of the power loss in drivetrains and the antifriction design of bearings. This paper investigates a method for accurately predicting the frictional moment of the cylindrical roller bearing (CRB) under a wide range of operating conditions. The complex relationship between the bearing frictional moment and multiple operating parameters such as the shaft speed, roller–raceway contact load, cage slip ratio and lubricating property is established using an experimental data-driven artificial neural network (ANN) model. To provide actual data for training and testing the ANN model, the frictional moment and multiple operating parameters of the test CRB are synchronously measured under many test conditions. Compared with the prediction results from conventional physical models, the experimental data-driven ANN model reveals a higher prediction performance of the frictional moment.
    • Download: (2.148Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Prediction of Frictional Moment of Cylindrical Roller Bearing Using Experimental Data-Driven Artificial Neural Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294953
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorHou, Yu
    contributor authorWang, Xi
    contributor authorXu, Bihe
    contributor authorGeng, Yangliao
    contributor authorLi, Qingyong
    contributor authorYang, Di
    date accessioned2023-11-29T19:41:09Z
    date available2023-11-29T19:41:09Z
    date copyright5/19/2023 12:00:00 AM
    date issued5/19/2023 12:00:00 AM
    date issued2023-05-19
    identifier issn0742-4787
    identifier othertrib_145_9_091103.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294953
    description abstractAccurate prediction of the frictional moment of the bearing contributes to the correct determination of the power loss in drivetrains and the antifriction design of bearings. This paper investigates a method for accurately predicting the frictional moment of the cylindrical roller bearing (CRB) under a wide range of operating conditions. The complex relationship between the bearing frictional moment and multiple operating parameters such as the shaft speed, roller–raceway contact load, cage slip ratio and lubricating property is established using an experimental data-driven artificial neural network (ANN) model. To provide actual data for training and testing the ANN model, the frictional moment and multiple operating parameters of the test CRB are synchronously measured under many test conditions. Compared with the prediction results from conventional physical models, the experimental data-driven ANN model reveals a higher prediction performance of the frictional moment.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePrediction of Frictional Moment of Cylindrical Roller Bearing Using Experimental Data-Driven Artificial Neural Networks
    typeJournal Paper
    journal volume145
    journal issue9
    journal titleJournal of Tribology
    identifier doi10.1115/1.4062367
    journal fristpage91103-1
    journal lastpage91103-12
    page12
    treeJournal of Tribology:;2023:;volume( 145 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian