YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Microstructure Characteristics and Tribological Properties of Gradient Cu-MoS2 Self-Lubricating Coating Fabricated by Selective Laser Melting of Ink-Printed Metal Nanoparticles

    Source: Journal of Tribology:;2023:;volume( 145 ):;issue: 012::page 121401-1
    Author:
    Guo, Wenfeng
    ,
    Bai, Ronghe
    ,
    Guan, Tianyu
    ,
    He, Yu
    ,
    Liu, Junyan
    DOI: 10.1115/1.4063083
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Self-lubricating coating has been used in industrial applications with severe conditions, such as high temperatures, vacuum, radiation, etc. In this paper, a selective laser melting of ink-printed metal nanoparticles (SLM-IP metal NPs) rapid manufacturing method was applied to fabricate Cu-MoS2 self-lubricating coating. A tailored ink consisting of metal NPs, reductant, and dispersant was deposited on a stainless steel substrate, forming the laminated gradient Cu-MoS2 coating. The microstructure and mechanical properties of the composite coating were characterized. The friction and wear behavior were experimentally investigated by dry sliding wear test at room and higher temperatures (>200 °C). The results indicated that the upper copper sulfur molybdenum compound layer with homogeneously distributed MoS2 provided a significant friction reduction and wear resistance. The SLM-IP Cu-MoS2 coatings showed a reduced friction coefficient by 54% compared to the pure Cu coating. The transitional Cu layer mitigated the abrupt changes in physical properties and enhanced the bonding strength between the coating and substrate. Especially, under the test condition of 200 °C, the Cu-40 vol% MoS2 coating also presented an excellent resistance to oxidation and had a lower friction coefficient of 0.24. This research provides the feasibility of fabricating self-lubricating coatings by the SLM-IP metal NPs method for surface engineering technologies.
    • Download: (2.218Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Microstructure Characteristics and Tribological Properties of Gradient Cu-MoS2 Self-Lubricating Coating Fabricated by Selective Laser Melting of Ink-Printed Metal Nanoparticles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294943
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorGuo, Wenfeng
    contributor authorBai, Ronghe
    contributor authorGuan, Tianyu
    contributor authorHe, Yu
    contributor authorLiu, Junyan
    date accessioned2023-11-29T19:40:26Z
    date available2023-11-29T19:40:26Z
    date copyright8/18/2023 12:00:00 AM
    date issued8/18/2023 12:00:00 AM
    date issued2023-08-18
    identifier issn0742-4787
    identifier othertrib_145_12_121401.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294943
    description abstractSelf-lubricating coating has been used in industrial applications with severe conditions, such as high temperatures, vacuum, radiation, etc. In this paper, a selective laser melting of ink-printed metal nanoparticles (SLM-IP metal NPs) rapid manufacturing method was applied to fabricate Cu-MoS2 self-lubricating coating. A tailored ink consisting of metal NPs, reductant, and dispersant was deposited on a stainless steel substrate, forming the laminated gradient Cu-MoS2 coating. The microstructure and mechanical properties of the composite coating were characterized. The friction and wear behavior were experimentally investigated by dry sliding wear test at room and higher temperatures (>200 °C). The results indicated that the upper copper sulfur molybdenum compound layer with homogeneously distributed MoS2 provided a significant friction reduction and wear resistance. The SLM-IP Cu-MoS2 coatings showed a reduced friction coefficient by 54% compared to the pure Cu coating. The transitional Cu layer mitigated the abrupt changes in physical properties and enhanced the bonding strength between the coating and substrate. Especially, under the test condition of 200 °C, the Cu-40 vol% MoS2 coating also presented an excellent resistance to oxidation and had a lower friction coefficient of 0.24. This research provides the feasibility of fabricating self-lubricating coatings by the SLM-IP metal NPs method for surface engineering technologies.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMicrostructure Characteristics and Tribological Properties of Gradient Cu-MoS2 Self-Lubricating Coating Fabricated by Selective Laser Melting of Ink-Printed Metal Nanoparticles
    typeJournal Paper
    journal volume145
    journal issue12
    journal titleJournal of Tribology
    identifier doi10.1115/1.4063083
    journal fristpage121401-1
    journal lastpage121401-11
    page11
    treeJournal of Tribology:;2023:;volume( 145 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian