YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Period-1 Motions to Twin Spiral Homoclinic Orbits in the Rössler System

    Source: Journal of Computational and Nonlinear Dynamics:;2023:;volume( 018 ):;issue: 008::page 81008-1
    Author:
    Xing, Siyuan
    ,
    Luo, Albert C. J.
    DOI: 10.1115/1.4062201
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, period-1 motions to twin spiral homoclinic orbits in the Rössler system are presented. The period-1 motions varying with a system parameter are predicted semi-analytically through an implicit mapping method, and the corresponding stability and bifurcations of the period-1 motions are determined through eigenvalue analysis. The approximate homoclinic orbits are obtained, which can be detected through the periodic motions with the positive and negative infinite large eigenvalues. The two limit ends of the bifurcation diagram of the period-1 motion are at twin spiral homoclinic orbits. For comparison, numerical and analytical results of stable period-1 motion are presented. The approximate spiral homoclinic orbits are demonstrated for a better understanding of complex dynamics of homoclinic orbits. Herein, only initial results on periodic motions to homoclinic orbits are presented for the Rössler system. In fact, the Rössler system has rich complex dynamics existing in other high-dimensional nonlinear systems. Thus, the further studies of bifurcation trees of periodic motions to infinite homoclinic orbits will be completed in sequel.
    • Download: (2.518Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Period-1 Motions to Twin Spiral Homoclinic Orbits in the Rössler System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294922
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorXing, Siyuan
    contributor authorLuo, Albert C. J.
    date accessioned2023-11-29T19:38:35Z
    date available2023-11-29T19:38:35Z
    date copyright5/4/2023 12:00:00 AM
    date issued5/4/2023 12:00:00 AM
    date issued2023-05-04
    identifier issn1555-1415
    identifier othercnd_018_08_081008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294922
    description abstractIn this paper, period-1 motions to twin spiral homoclinic orbits in the Rössler system are presented. The period-1 motions varying with a system parameter are predicted semi-analytically through an implicit mapping method, and the corresponding stability and bifurcations of the period-1 motions are determined through eigenvalue analysis. The approximate homoclinic orbits are obtained, which can be detected through the periodic motions with the positive and negative infinite large eigenvalues. The two limit ends of the bifurcation diagram of the period-1 motion are at twin spiral homoclinic orbits. For comparison, numerical and analytical results of stable period-1 motion are presented. The approximate spiral homoclinic orbits are demonstrated for a better understanding of complex dynamics of homoclinic orbits. Herein, only initial results on periodic motions to homoclinic orbits are presented for the Rössler system. In fact, the Rössler system has rich complex dynamics existing in other high-dimensional nonlinear systems. Thus, the further studies of bifurcation trees of periodic motions to infinite homoclinic orbits will be completed in sequel.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePeriod-1 Motions to Twin Spiral Homoclinic Orbits in the Rössler System
    typeJournal Paper
    journal volume18
    journal issue8
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4062201
    journal fristpage81008-1
    journal lastpage81008-8
    page8
    treeJournal of Computational and Nonlinear Dynamics:;2023:;volume( 018 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian