YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Microstructure Analysis and Finite Element Modelling for Creep Failure Prediction and Fitness-For-Service Assessment of Superheater Tubes

    Source: Journal of Pressure Vessel Technology:;2023:;volume( 145 ):;issue: 005::page 51505-1
    Author:
    Zangeneh, Sh.
    ,
    Lashgari, H. R.
    ,
    Moazed, Reza
    DOI: 10.1115/1.4062974
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study aimed to perform a fitness-for-service assessment and investigate the root cause of failure of Grade 14CrMo3 steel seamless tubes typically used in superheaters in power generation plants. For this purpose, samples were taken from in-service superheater tubes in a 320 MW power plant. Thickness and hardness measurements were taken from the samples, and microstructural analyses were performed using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and X-ray diffraction. The results showed the presence of vanadium (V) and sulfur (S) elements on the tubes' external surface (flue gas facing-side), which is indicative of fuel ash corrosion. The formation of low melting point salts, such as Na2SO4, NaVO3, Na2O, and V2O5 (particularly between 10 and 2 o'clock positions) and degradation of the protective oxide layer led to loss of tube wall thickness. On the steam side of the tubes, the formation of an iron oxide layer (particularly between 12 and 2 o'clock positions) and the presence of water in the steam due to the improper function of the steam drum created an insulated zone leading to the formation of localized hot spots, creep microvoids, and spheroidization of carbides. In addition, a thickness reduction of 18% resulted in a considerable increase in hoop stresses having a detrimental effect on the remaining creep life. To explain the creep damage mechanism and determine the remaining creep life, the Larson–Miller criteria and API 579-1/ASME fitness-for-service-1 guidelines were utilized. The effects of the reduction in wall thickness were considered by performing a three-dimensional finite element analysis. The results showed that a temperature increase of only 50 °C (from 480 °C) could decrease the life of the tubes from 30 years to less than a year.
    • Download: (5.305Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Microstructure Analysis and Finite Element Modelling for Creep Failure Prediction and Fitness-For-Service Assessment of Superheater Tubes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294908
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorZangeneh, Sh.
    contributor authorLashgari, H. R.
    contributor authorMoazed, Reza
    date accessioned2023-11-29T19:37:27Z
    date available2023-11-29T19:37:27Z
    date copyright8/10/2023 12:00:00 AM
    date issued8/10/2023 12:00:00 AM
    date issued2023-08-10
    identifier issn0094-9930
    identifier otherpvt_145_05_051505.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294908
    description abstractThis study aimed to perform a fitness-for-service assessment and investigate the root cause of failure of Grade 14CrMo3 steel seamless tubes typically used in superheaters in power generation plants. For this purpose, samples were taken from in-service superheater tubes in a 320 MW power plant. Thickness and hardness measurements were taken from the samples, and microstructural analyses were performed using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and X-ray diffraction. The results showed the presence of vanadium (V) and sulfur (S) elements on the tubes' external surface (flue gas facing-side), which is indicative of fuel ash corrosion. The formation of low melting point salts, such as Na2SO4, NaVO3, Na2O, and V2O5 (particularly between 10 and 2 o'clock positions) and degradation of the protective oxide layer led to loss of tube wall thickness. On the steam side of the tubes, the formation of an iron oxide layer (particularly between 12 and 2 o'clock positions) and the presence of water in the steam due to the improper function of the steam drum created an insulated zone leading to the formation of localized hot spots, creep microvoids, and spheroidization of carbides. In addition, a thickness reduction of 18% resulted in a considerable increase in hoop stresses having a detrimental effect on the remaining creep life. To explain the creep damage mechanism and determine the remaining creep life, the Larson–Miller criteria and API 579-1/ASME fitness-for-service-1 guidelines were utilized. The effects of the reduction in wall thickness were considered by performing a three-dimensional finite element analysis. The results showed that a temperature increase of only 50 °C (from 480 °C) could decrease the life of the tubes from 30 years to less than a year.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMicrostructure Analysis and Finite Element Modelling for Creep Failure Prediction and Fitness-For-Service Assessment of Superheater Tubes
    typeJournal Paper
    journal volume145
    journal issue5
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4062974
    journal fristpage51505-1
    journal lastpage51505-13
    page13
    treeJournal of Pressure Vessel Technology:;2023:;volume( 145 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian